竹磬网-邵珠庆の日记 生命只有一次,你可以用它来做些更多伟大的事情–Make the world a little better and easier


213月/180

Vue.js 单页应用部署百度统计

发布在 邵珠庆

前言

申请百度统计后,会得到一段JS代码,需要插入到每个网页中去,在Vue.js项目首先想到的可能就是,把统计代码插入到index.html入口文件中,这样就全局插入,每个页面就都有了;这样做就涉及到一个问题,Vue.js项目是单页应用,每次用户浏览网站时,访问内页时页面是不会刷新的,也就意味着不会触发百度统计代码;所以最终在百度统计后台看到的效果就是只统计到了网页入口的流量,却无法统计到内页的访问流量。

解决方法

在main.js文件中调用vue-router的afterEach方法,将统计代码加入到这个方法里面,这样每次router发生改变的时候都会执行一下统计代码,这样就达到了目的,代码如下:


router.afterEach( ( to, from, next ) => {
    setTimeout(()=>{
        var _hmt = _hmt || [];
        (function() {
            //每次执行前,先移除上次插入的代码
            document.getElementById('baidu_tj') && document.getElementById('baidu_tj').remove();
            var hm = document.createElement("script");
            hm.src = "https://hm.baidu.com/hm.js?xxxx";
            hm.id = "baidu_tj"
            var s = document.getElementsByTagName("script")[0];
            s.parentNode.insertBefore(hm, s);
        })();
    },0);
} );
133月/180

【架构设计】微服务的4大设计原则和19个解决方案

发布在 邵珠庆

自动草稿

  作者|郝炎峰

编辑|小智

本文将介绍微服务架构的演进、优缺点和微服务应用的设计原则,然后着重介绍作为一个“微服务应用平台”需要提供哪些能力、解决哪些问题才能更好的支撑企业应用架构。

注:本文转载自公众号 EAWorld,已获授权。

写在前面

微服务架构现在是谈到企业应用架构时必聊的话题,微服务之所以火热也是因为相对之前的应用开发方式有很多优点,如更灵活、更能适应现在需求快速变更的大环境。

微服务平台也是我目前正在参与的,还在研发过程中的平台产品,平台是以 SpringCloud 为基础,结合了普元多年来对企业应用的理解和产品的设计经验,逐步孵化的一个微服务应用平台。

微服务架构演进过程

自动草稿

近年来我们大家都体会到了互联网、移动互联带来的好处,作为 IT 从业者,在生活中时刻感受互联网好处的同时,在工作中可能感受的却是来自自互联网的一些压力,那就是我们传统企业的 IT 建设也是迫切需要转型,需要面向外部客户,我们也需要应对外部环境的快速变化、需要快速创新,那么我们的 IT 架构也需要向互联网企业学习作出相应的改进,来支撑企业的数字化转型。

我们再看一下应用架构的演进过程,回忆一下微服务架构是如何一步一步进化产生的,最早是应用是单块架构,后来为了具备一定的扩展和可靠性,就有了垂直架构,也就是加了个负载均衡,接下来是前几年比较火的 SOA,主要讲了应用系统之间如何集成和互通,而到现在的微服务架构则是进一步在探讨一个应用系统该如何设计才能够更好的开发、管理更加灵活高效。

微服务架构的基本思想就是“围绕业务领域组件来创建应用,让应用可以独立的开发、管理和加速”。

微服务架构的好处

自动草稿

  我们总结了四个方面的优点,分别如下:

是每个微服务组件都是简单灵活的,能够独立部署。不再像以前一样,应用需要一个庞大的应用服务器来支撑。

可以由一个小团队负责更专注专业,相应的也就更高效可靠。

微服务之间是松耦合的,微服务内部是高内聚的,每个微服务很容易按需扩展。

微服务架构与语言工具无关,自由选择合适的语言和工具,高效的完成业务目标即可。

看到这里,大家会觉得微服务架构挺不错,然而还会有一些疑问,什么样的应用算是一个微服务架构的应用?该怎样设计一个微服务架构的应用?那我们来一起看看我们推荐的微服务应用的设计原则。

微服务应用 4 个设计原则

自动草稿

  我们总结了四个原则推荐给大家:

AKF 拆分原则

前后端分离

无状态服务

Restful 通信风格

AKF 拆分原则

自动草稿

AKF 扩展立方体(参考《The Art of Scalability》),是一个叫 AKF 的公司的技术专家抽象总结的应用扩展的三个维度。理论上按照这三个扩展模式,可以将一个单体系统,进行无限扩展。

X 轴 :指的是水平复制,很好理解,就是讲单体系统多运行几个实例,做个集群加负载均衡的模式。

Z 轴 :是基于类似的数据分区,比如一个互联网打车应用突然或了,用户量激增,集群模式撑不住了,那就按照用户请求的地区进行数据分区,北京、上海、四川等多建几个集群。

Y 轴 :就是我们所说的微服务的拆分模式,就是基于不同的业务拆分。

场景说明:比如打车应用,一个集群撑不住时,分了多个集群,后来用户激增还是不够用,经过分析发现是乘客和车主访问量很大,就将打车应用拆成了三个乘客服务、车主服务、支付服务。三个服务的业务特点各不相同,独立维护,各自都可以再次按需扩展。

前后端分离

自动草稿

前后端分离原则,简单来讲就是前端和后端的代码分离也就是技术上做分离,我们推荐的模式是最好直接采用物理分离的方式部署,进一步促使进行更彻底的分离。不要继续以前的服务端模板技术,比如 JSP ,把 Java JS HTML CSS 都堆到一个页面里,稍复杂的页面就无法维护。这种分离模式的方式有几个好处:

前后端技术分离,可以由各自的专家来对各自的领域进行优化,这样前端的用户体验优化效果会更好。

分离模式下,前后端交互界面更加清晰,就剩下了接口和模型,后端的接口简洁明了,更容易维护。

前端多渠道集成场景更容易实现,后端服务无需变更,采用统一的数据和模型,可以支撑前端的 web UI 移动 App 等访问。

无状态服务

自动草稿

对于无状态服务,首先说一下什么是状态:如果一个数据需要被多个服务共享,才能完成一笔交易,那么这个数据被称为状态。进而依赖这个“状态”数据的服务被称为有状态服务,反之称为无状态服务。

那么这个无状态服务原则并不是说在微服务架构里就不允许存在状态,表达的真实意思是要把有状态的业务服务改变为无状态的计算类服务,那么状态数据也就相应的迁移到对应的“有状态数据服务”中。

场景说明:例如我们以前在本地内存中建立的数据缓存、Session 缓存,到现在的微服务架构中就应该把这些数据迁移到分布式缓存中存储,让业务服务变成一个无状态的计算节点。迁移后,就可以做到按需动态伸缩,微服务应用在运行时动态增删节点,就不再需要考虑缓存数据如何同步的问题。

Restful 通信风格

自动草稿

作为一个原则来讲本来应该是个“无状态通信原则”,在这里我们直接推荐一个实践优选的 Restful 通信风格 ,因为他有很多好处:

无状态协议 HTTP,具备先天优势,扩展能力很强。例如需要安全加密是,有现成的成熟方案 HTTPS 可用。

JSON 报文序列化,轻量简单,人与机器均可读,学习成本低,搜索引擎友好。

语言无关,各大热门语言都提供成熟的 Restful API 框架,相对其他的一些 RPC 框架生态更完善。

当然在有些特殊业务场景下,也需要采用其他的 RPC 框架,如 thrift、avro-rpc、grpc。但绝大多数情况下 Restful 就足够用了。

微服务架构带来的问题

做到了前面讲的四个原则,那么就可以说是构建了一个微服务应用,感觉上也不复杂。但实际上微服务也不是个万金油,也是有利有弊的,接下来我们来看看引入微服务架构后带来的问题有哪些。

自动草稿

依赖服务变更很难跟踪,其他团队的服务接口文档过期怎么办?依赖的服务没有准备好,如何验证我开发的功能。

部分模块重复构建,跨团队、跨系统、跨语言会有很多的重复建设。

微服务放大了分布式架构的系列问题,如分布式事务怎么处理?依赖服务不稳定怎么办?

运维复杂度陡增,如:部署物数量多、监控进程多导致整体运维复杂度提升。

上面这些问题我们应该都遇到过,并且也会有一些解决方案,比如提供文档管理、服务治理、服务模拟的工具和框架; 实现统一认证、统一配置、统一日志框架、分布式汇总分析; 采用全局事务方案、采用异步模拟同步;搭建持续集成平台、统一监控平台等等。

这些解决方案折腾到最后终于搞明白了,原来我们是需要一个微服务应用平台才能整体性的解决这些问题。

微服务平台的 19 个落地实践

企业 IT 建设的三大基础环境

我们先来宏观的看一下,一个企业的 IT 建设非常重要的三大基础环境:团队协作环境、个人基础环境、IT 基础设施。

自动草稿

团队协作环境:主要是 DevOps 领域的范畴,负责从需求到计划任务,团队协作,再到质量管理、持续集成和发布。

个人基础环境:就是本文介绍的微服务应用平台,他的目标主要就是要支撑微服务应用的设计开发测试,运行期的业务数据处理和应用的管理监控。

IT 基础设施:就是我们通常说的各种运行环境支撑如 IaaS (VM 虚拟化) 和 CaaS (容器虚拟化) 等实现方式。

微服务应用平台总体架构

自动草稿

微服务应用平台的总体架构,主要是从开发集成、微服务运行容器与平台、运行时监控治理和外部渠道接入等维度来划分的。

开发集成:主要是搭建一个微服务平台需要具备的一些工具和仓库

运行时:要有微服务平台来提供一些基础能力和分布式的支撑能力,我们的微服务运行容器则会运行在这个平台之上。

监控治理:则是致力于在运行时能够对受管的微服务进行统一的监控、配置等能力。

服务网关: 则是负责与前端的 WEB 应用 移动 APP 等渠道集成,对前端请求进行认真鉴权,然后路由转发。

微服务应用平台的运行视图

自动草稿

参考上图,在运行期,作为一个微服务架构的平台与业务系统,除了业务应用本身外,还需要有接入服务、统一门户、基础服务等平台级服务来保障业务系统的可靠运行。图中的公共服务就是业务处理过程中需要用到的一些可选服务。

微服务平台的设计目标

自动草稿

微服务平台的主要目标主要就是要支撑微服务应用的全生命周期管理,从需求到设计开发测试,运行期的业务数据处理和应用的管理监控等,后续将从应用生命周期的几个重要阶段切入,结合前面提到的设计原则和问题,介绍平台提供的能力支撑情况。

微服务开发:前端、后端、混合

自动草稿

我们一起看一下我们正在开发中的微服务应用平台 EOS8.0 的一些开发工具截图,了解一下开发期提供了哪些关键的能力支撑。

前面的设计原则中提到了一个前后端分离的原则,那么我们的开发环境中,目前支持创建前端项目、后端项目和混合项目。其中前端项目、后端项目就对应前后端分离的原则,利用平台中集成的开发工具和框架可以做到前后端开发分离,利用持续集成工具可以方便的将前端、后端项目编译打包成可独立运行的程序。混合项目则是为了兼容传统模式而保留的,为企业应用向微服务架构演进提供过渡方案。

服务契约与 API 管理

对于前面提到的微服务带来的依赖管理问题,我们可以通过平台提供的 API 管理能力来解决。说到 API 管理,那首先就用提到服务契约。平台开发工具中提供了方便的服务发布能力,能够快速的将业务功能对外发布,生成服务的规格契约,当然也可以先设计服务契约,在根据契约来生成服务的默认实现代码。

这里强调一下,我们提到的服务契约是一个很重要的东西,他有点类似 web service 的 wsdl 描述,主要描述服务接口的输入输出规格标准和其他一些服务调用集成相关的规格内容。

自动草稿

  服务契约与服务模拟

有了服务契约,我们就可以根据契约自动生成服务的文档和服务模拟测试环境,这样,开发者就可以方便的获取到依赖服务变更的情况,能够及时的根据依赖服务的变化调整自己的程序,并且能够方便的进行模拟测试验证。

自动草稿

根据契约生成模拟服务也就是我们常说的服务挡板,这样即使依赖的其他服务还无法提供功能,我们也可以通过挡板来进行联调测试。

服务契约与服务编排

自动草稿

有了服务契约,那就有了服务接口的输入输出规格,那么 restful 的服务编排也就变得可行。在我们设计的契约标准中,还定义了调用集成相关的内容,比如服务支持的事务模式等等。通过这些约定,我们就可以采用简单图形化的方式来对业务服务流程进行编排。编排能够很大程度上简化分布式服务调用的复杂度,如同步、异步、异步模拟同步、超时重试、事务补偿等,均有服务编排引擎完成,不再完全依赖老师傅的编码能力。

服务编排的作用和意义很大,可以快速的将已经提供的微服务能力进行组合发布,非常适合业务的快速创新。

但是大家要注意,逻辑流编排的是业务流程,尽量能够简单明了,一眼看上去就明白业务含义。而业务规则推荐采用服务内部进行编码实现。千万不要将我们的 “逻辑流” 图形化服务编排完全取代程序编码,这样就会可能会走入另外一个极端,比如设计出像蜘蛛网一样的逻辑流图,简直就是灾难。

微服务容器

自动草稿

我们再来看一下微服务运行容器的一个逻辑图,大家可以看到,我们要做微服务架构的应用,可靠高效的微服务应用,实际上我们需要做的事情还是非常多的。如果没有一个统一的微服务容器,这些能力在每个微服务组件中都需要建设一遍,而且会五花八门,也很难集成到一起。有了统一的微服务运行容器和一些公共的基础服务,前面所提到的微服务架构下部分组件重复建设的问题也迎刃而解。

三方能力集成说明

我们的 API 管理契约文档 API 模拟我们是集成了 Swagger 的工具链。微服务应用平台的基础就是 SpringCloud,从容器框架到注册发现再到安全认证这些基础方案均采用了他的能力来支撑。下面简单看下我们集成的一些开源框架和工具。

自动草稿

SpringCloud 在微服务平台中的定位是基础框架,本文重点是要介绍一个企业级的微服务平台在落地过程中的一些设计原则和解决方案。具体 Spring Cloud 相关的技术就不在文中多做介绍了,大家可以在我们的公众号里面查看相关文章。

服务注册发现路由

自动草稿

接下来我们聊一下注册发现,以前的单块应用之间互相调用时配置个 IP 就行了,但在微服务架构下,服务提供者会有很多,手工配置 IP 地址又变成了一个不可行的事情。那么服务自动注册发现的方案就解决了这个问题。

我们的服务注册发现能力是依赖 SpringCloud Eureka 组件实现的。服务在启动的时候,会将自己要发布的服务注册到服务注册中心,运行时,如果需要调用其他微服务的接口,那么就要先到注册中心获取服务提供者的地址,拿到地址后,通过微服务容器内部的简单负载均衡期进行路由用。

一般情况,系统内微服务的调用都通过这种客户端负载的模式进行,否则就需要有很多的负载均衡进程。跨业务系统的服务调用,也可以采用这种去中心化的路由方式。当然采用 SOA 的模式,由中心化的服务网管来管理系统间的调用也是另一种选择,要结合企业的 IT 现状和需求来决定。

统一认证鉴权

自动草稿

安全认证方面,我们基于 Spring Security 结合 Auth2 再加上 JWT(Json web token)做安全令牌,实现统一的安全认证与鉴权,使得微服务之间能够按需隔离和安全互通。后续在统一认证和权限方面我们产品会陆续推出较完善并且扩展性良好的微服务组件,可以作为微服务平台的公共的认证和鉴权服务。再啰嗦一句,认证鉴权一定是个公共的服务,而不是多个系统各自建设。

日志与流水设计

自动草稿

作为一个微服务应用平台除了提供支撑开发和运行的技术组件和框架之外,我们还提供一些运维友好的经验总结,我们一起来看一下我们推荐的日志与流水实现,先来看日志,平台默认回会提供的日志主要有三种,系统日志,引擎日志还有跟踪日志。有了这些日志,在出问题的时候能够帮助我们获取一些关键信息进行问题定位。

要想做到出了问题能够追根溯源,那么右边的这些流水号的设计也是非常重要的,日志与各种流水号配合,能够让我们快速定位问题发生的具体时间地点以及相关信息,能够快速还原业务交易全链路。对这些日志与流水的细节处理,对于系统运维问题定位有非常大的帮助,没有这些有用的日志内容,ELK 日志收集套件搭建的再漂亮,收一对垃圾日志也是没用的。通常开源框架只是提供个框架有开发人员自由发挥,而设计一个平台则一定要考虑直接提供统一规范的基础能力。

集中配置管理

自动草稿

微服务分布式环境下,一个系统拆分为很多个微服务,一定要告别投产或运维手工修改配置配置的方式。需要采用集中配置管理的方式来提升运维的效率。

配置文件主要有运行前的静态配置和运行期的动态配置两种。静态配置通常是在编译部署包之前设置好。动态配置则是系统运行过程中需要调整的系统变量或者业务参数。要想做到集中的配置管理,那么需要注意以下几点:

是配置与介质分离,这个就需要通过制定规范的方式来控制。千万别把配置放在 Jar 包里;

是配置的方式要统一,格式、读写方式、变更热更新的模式尽量统一,要采用统一的配置框架;

就是需要运行时需要有个配置中心来统一管理业务系统中的配置信息,这个就需要平台来提供配置中心服务和配置管理门户。

统一管理门户

自动草稿

微服务架构下,一个大的 EAR、WAR 应用被拆为了多个小的可独立运行的微服务程序,通常这些微服务程序都不再依赖应用服务器,不依赖传统应用服务器的话,应用服务器提供管理控制台也就没得用了,所以微服务的运行时管理需要有统一的管理门户来支撑。我们规划了的统一集中的微服务门户,可以支撑 应用开发、业务处理、应用管理、系统监控等。上图是应用管理页面,就是对我们传统意义上的业务系统进行管理,点击一个业务系统,我们就能够看到系统下有哪些微服务,每个微服务有几个节点实例再运行,可以监控微服务的子节点状态,对微服务进行配置管理和监控。

分布式事务问题

自动草稿

微服务架构的系统下,进程成倍增多,那么也分布式事务一致性的问题也就更加明显。我们这里说的事务一致性,不是传统说的基于数据库实现的技术事务。微服务之间是独立的、调用协议也是无状态的,因此数据库事务方案在一开始就已经不再我们考虑的范围内。我们要解决的是一定时间后的数据达到最终一致状态,准确的说就是采用传统的业务补偿与冲正方式。

推荐的事务一致性方案有三种:

可靠事件模式:即事件的发送和接收保障高可靠性,来实现事务的一致性。

补偿模式:Confirm Cancel ,如果确认失败,则全部逆序取消。

TCC 模式:Try Confirm Cancel ,补偿模式的一种特殊实现 通常转账类交易会采用这种模式。

分布式同步调用问题

自动草稿

微服务架构下,相对于传统部署方式,存在更多的分布式调用,那么“如何在不确定的环境中交付确定的服务”,这句话可以简单理解为,我所依赖的服务的可靠性是无法保证的情况下,我如何保证自己能够正常的提供服务,不被我依赖的其他服务拖垮?

我们推荐 SEDA 架构来解决这个问题。

自动草稿

SEDA : staged event-driven architecture 本质上就是采用分布式事件驱动的模式,用异步模拟来同步,无阻塞等待,再加上资源分配隔离结起来的一个解决方案。

持续集成与持续交付设计

自动草稿

在运维方面,首先我们要解决的就是持续集成和持续交付,而微服务应用平台的职责范围目前规划是只做持续集成,能够方便的用持续集成环境把程序编译成介质包和部署包。(目前规划持续部署由 DevOps 平台提供相应能力,微服务平台可与 DevOps 平台集成)

这里要厘清一个概念:介质,是源码编译后的产物,与环境无关,多环境下应该是可以共用的,如:jar、dockerfile;配置:则是环境相关的信息。配置 介质 = 部署包。

获取到部署包之后,微服务应用平台的职责就完成了,接下来就是运维人员各显神通来进行上线部署操作。

微服务平台与容器云、DevOps 的关系

自动草稿

就微服务应用平台本身来说,并不依赖 DevOps 和容器云,开发好的部署包可以运行在物理机、虚拟机或者是容器中。

然而当微服务应用平台结合了 DevOps 和容器云之后,我们就会发现,持续集成和交付变成了一个非常简单便捷并且又可靠的过程。

简单几步操作,整套开发、测试、预发或者生产环境就能够搭建完成。整个过程的复杂度都由平台给屏蔽掉了,通过三大基础环境的整合,我们能够使分散的微服务组件更简单方便的进行统一管理和运维交付。

总结展望

我们再来回顾一下,三大基础环境的关系。微服务应用平台负责应用开发、运行以及管理;DevOps 负责项目管理、计划管理、CI、CD 和团队沟通协作等;容器云平台则负责基础设置管理,屏蔽环境的复杂度。

这三大基础环境的建设情况,直接反应出了企业 IT 能力水平。这三大基础环境是技术人员和企业都希望拥有的,是企业赢得竞争、驱动业务创新的基础,是企业加速数字化转型的必由之路。

最后,我们一起看一下普元正在研发的新一代 The Platform 平台。

自动草稿

上图红框中的内容是与我们今天分享的微服务应用平台相关的部分。整个 The Platform 平台是我们站在企业整体架构规划的角度,从多个维度入手,目标是为企业搭建一个持续发展的 IT 生态环境,加速企业的数字化型。

133月/180

【架构】微服务架构设计

发布在 邵珠庆

微服务

软件架构是一个包含各种组织的系统组织,这些组件包括 Web服务器, 应用服务器, 数据库,存储, 通讯层), 它们彼此或和环境存在关系。系统架构的目标是解决利益相关者的关注点。

Conway’s law: Organizations which design systems[...] are constrained to produce designs which are copies of the communication structures of these organizations.

(设计系统的组织,其产生的设计和架构等价于组织间的沟通结构。)

Monolithic架构


Monolithic比较适合小项目,优点是:

开发简单直接,集中式管理, 基本不会重复开发

功能都在本地,没有分布式的管理开销和调用开销。它的缺点也非常明显,特别对于互联网公司来说(不一一列举了):

开发效率低:所有的开发在一个项目改代码,递交代码相互等待,代码冲突不断

代码维护难:代码功能耦合在一起,新人不知道何从下手

部署不灵活:构建时间长,任何小修改必须重新构建整个项目,这个过程往往很长

稳定性不高:一个微不足道的小问题,可以导致整个应用挂掉

扩展性不够:无法满足高并发情况下的业务需求

微服务架构

微服务是指开发一个单个小型的但有业务功能的服务,每个服务都有自己的处理和轻量通讯机制,可以部署在单个或多个服务器上。微服务也指一种种松耦合的、有一定的有界上下文的面向服务架构。也就是说,如果每个服务都要同时修改,那么它们就不是微服务,因为它们紧耦合在一起;如果你需要掌握一个服务太多的上下文场景使用条件,那么它就是一个有上下文边界的服务,这个定义来自DDD领域驱动设计。

相对于单体架构和SOA,它的主要特点是组件化、松耦合、自治、去中心化,体现在以下几个方面:

  • 一组小的服务
    服务粒度要小,而每个服务是针对一个单一职责的业务能力的封装,专注做好一件事情。
  • 独立部署运行和扩展
    每个服务能够独立被部署并运行在一个进程内。这种运行和部署方式能够赋予系统灵活的代码组织方式和发布节奏,使得快速交付和应对变化成为可能。
  • 独立开发和演化
    技术选型灵活,不受遗留系统技术约束。合适的业务问题选择合适的技术可以独立演化。服务与服务之间采取与语言无关的API进行集成。相对单体架构,微服务架构是更面向业务创新的一种架构模式。
  • 独立团队和自治
    团队对服务的整个生命周期负责,工作在独立的上下文中,自己决策自己治理,而不需要统一的指挥中心。团队和团队之间通过松散的社区部落进行衔接。

        我们可以看到整个微服务的思想就如我们现在面对信息爆炸、知识爆炸是一样的:通过解耦我们所做的事情,分而治之以减少不必要的损耗,使得整个复杂的系统和组织能够快速的应对变化。

我们为什么采用微服务呢?

"让我们的系统尽可能快地响应变化" - Rebecca Parson

让我们的系统尽可能快地去响应变化。其实几十年来我们一直在尝试解决这个问题。如果一定要在前面加个限制的话,那就是低成本的快速响应变化。上世纪90年代Kent Beck提出要拥抱变化,在同期出现了诸多轻量级开发方法(诸如 XP、Scrum);2001年敏捷宣言诞生,之后又出现了精益、看板等新的管理方式。如果说,这些是为了尽快的响应变化,在软件开发流程和实践方面提出的解决方案,那么微服务架构就是在软件技术和架构层面提出的应对之道。

Autonomous
A Microservice is a unit of functionality; it provides an API for a set of capabilities oriented around a business domain or common utility

Isolated
A Microservice is a unit of deployment; it can be modified, tested and deployed as a unit without impacting other areas of a solution

Elastic
A Microservice is stateless; it can be horizontally scaled up and down as needed

Resilient
A Microservice is designed for failure; it is fault tolerant and highly available

Responsive
A Microservice responds to requests in a reasonable amount of time

Intelligent
The intelligence in a system is found in the Microservice endpoints not ‘on the wire’

Message Oriented
Microservices rely on HTTP or a lightweight message bus to establish a boundary between components; this ensures loose coupling, isolation, location transparency, and provides the means to delegate errors as messages

Programmable
Microservices provide API’s for access by developers and administrators

Composable
Applications are composed from multiple Microservices

Automated
The lifecycle of a Microservice is managed through automation that includes development, build, test, staging, production and distribution

服务之间如何通信

 

一般同步调用比较简单,一致性强,但是容易出调用问题,性能体验上也会差些,特别是调用层次多的时候。RESTful和RPC的比较也是一个很有意 思的话题。一般REST基于HTTP,更容易实现,更容易被接受,服务端实现技术也更灵活些,各个语言都能支持,同时能跨客户端,对客户端没有特殊的要 求,只要封装了HTTP的SDK就能调用,所以相对使用的广一些。RPC也有自己的优点,传输协议更高效,安全更可控,特别在一个公司内部,如果有统一个 的开发规范和统一的服务框架时,他的开发效率优势更明显些。就看各自的技术积累实际条件,自己的选择了。而异步消息的方式在分布式系统中有特别广泛的应用,他既能减低调用服务之间的耦合,又能成为调用之间的缓冲,确保消息积压不会冲垮被调用方,同时能 保证调用方的服务体验,继续干自己该干的活,不至于被后台性能拖慢。不过需要付出的代价是一致性的减弱,需要接受数据最终一致性;还有就是后台服务一般要 实现幂等性,因为消息发送出于性能的考虑一般会有重复(保证消息的被收到且仅收到一次对性能是很大的考验);最后就是必须引入一个独立的broker,如 果公司内部没有技术积累,对broker分布式管理也是一个很大的挑战。

 

微服务优点

  • 每个微服务都很小,这样能聚焦一个指定的业务功能或业务需求。
  • 微服务能够被小团队单独开发,这个小团队是2到5人的开发人员组成。
  • 微服务是松耦合的,是有功能意义的服务,无论是在开发阶段或部署阶段都是独立的。
  • 微服务能使用不同的语言开发。
  • 微服务允许容易且灵活的方式集成自动部署,通过持续集成工具,如Jenkins, bamboo 。
  • 一个团队的新成员能够更快投入生产。
  • 微服务易于被一个开发人员理解,修改和维护,这样小团队能够更关注自己的工作成果。无需通过合作才能体现价值。
  • 微服务允许你利用融合最新技术。
  • 微服务只是业务逻辑的代码,不会和HTML,CSS 或其他界面组件混合。
  • 微服务能够即时被要求扩展。
  • 微服务能部署中低端配置的服务器上。
  • 易于和第三方集成。
  • 每个微服务都有自己的存储能力,可以有自己的数据库。也可以有统一数据库。

微服务架构的缺点

  • 微服务架构可能带来过多的操作。
  • 需要DevOps技巧 (http://en.wikipedia.org/wiki/DevOps).
  • 可能双倍的努力。
  • 分布式系统可能复杂难以管理。
  • 因为分布部署跟踪问题难。
  • 当服务数量增加,管理复杂性增加。

需要考虑的问题

  • 单个微服务代码量小,易修改和维护。但是,系统复杂度的总量是不变的,每个服务代码少了,但服务的个数肯定就多了。就跟拼图游戏一样,切的越碎,越难拼出整幅图。一个系统被拆分成零碎的微服务,最后要集成为一个完整的系统,其复杂度肯定比大块的功能集成要高很多。
  • 单个微服务数据独立,可独立部署和运行。虽然微服务本身是可以独立部署和运行的,但仍然避免不了业务上的你来我往,这就涉及到要对外通信,当微服务的数量达到一定量级的时候,如何提供一个高效的集群通信机制成为一个问题。
  • 单个微服务拥有自己的进程,进程本身就可以动态的启停,为无缝升级的打好了基础,但谁来启动和停止进程,什么时机,选择在哪台设备上做这件事情才是无缝升级的关键。这个能力并不是微服务本身提供的,而是需要背后强大的版本管理和部署能力。
  • 多个相同的微服务可以做负载均衡,提高性能和可靠性。正是因为相同微服务可以有多个不同实例,让服务按需动态伸缩成为可能,在高峰期可以启动更多的相同的微服务实例为更多用户服务,以此提高响应速度。同时这种机制也提供了高可靠性,在某个微服务故障后,其他相同的微服务可以接替其工作,对外表现为某个设备故障后业务不中断。同样的道理,微服务本身是不会去关心系统负载的,那么什么时候应该启动更多的微服务,多个微服务的流量应该如何调度和分发,这背后也有一套复杂的负载监控和均衡的系统在起作用。
  • 微服务可以独立部署和对外提供服务,微服务的业务上线和下线是动态的,当一个新的微服务上线时,用户是如何访问到这种新的服务?这就需要有一个统一的入口,新的服务可以动态的注册到这个入口上,用户每次访问时可以从这个入口拿到系统所有服务的访问地址。这个统一的系统入口并不是微服务本身的一部分,所以这种能力需要系统单独提供。
  • 还有一些企业级关注的系统问题,比如,安全策略如何集中管理?系统故障如何快速审计和跟踪到具体服务?整个系统状态如何监控?服务之间的依赖关系如何管理?等等这些问题都不是单个微服务考虑的范畴,而需要有一个系统性的考虑和设计,让每个微服务都能够按照系统性的要求和约束提供对应的安全性,可靠性,可维护性的能力。

API为什么很重要

•服务价值的精华体现
•可靠、可用、可读
•只有一次机会

实现一个API网关作为所有客户端的唯一入口。API网关有两种方式来处理请求。有些请求被简单地代理/路由到合适的服务上,其他的请求被转给到一组服务。

相比于提供普适的API,API网关根据不同的客户端开放不同的API。比如,Netflix API网关运行着客户端特定的适配器代码,会向客户端提供最适合其需求的API。

API网关也可以实现安全性,比如验证客户端是否被授权进行某请求。

设计要素

•Version
•RequstID
•Auth&Signature
•RateLimit
•Docs
•ErrorCode&Message

微服务治理

•按需伸缩
–部署与监控运维成本
•独立部署
–机器数量与部署成本
•业务独立
–服务依赖、治理,版本管理、事务处理
•技术多样性
–环境部署成本、约定成本

•运行状态治理
–监控、限流、SLA、LB、日志分析
•服务注册与发现
•部署
–快速、复制、扩容
–单机开发
•调用
–安全、容错、服务降级、调用延时

服务容错

当企业微服务化以后,服务之间会有错综复杂的依赖关系,例如,一个前端请求一般会依赖于多个后端服务,技术上称为1 -> N扇出. 在实际生产环境中,服务往往不是百分百可靠,服务可能会出错或者产生延迟,如果一个应用不能对其依赖的故障进行容错和隔离,那么该应用本身就处在被拖垮的风险中。在一个高流量的网站中,某个单一后端一旦发生延迟,可能在数秒内导致所有应用资源(线程,队列等)被耗尽,造成所谓的雪崩效应(Cascading Failure),严重时可致整个网站瘫痪。

服务依赖

服务框架

  1. 服务注册、发现、负载均衡和健康检查,假定采用进程内LB方案,那么服务自注册一般统一做在服务器端框架中,健康检查逻辑由具体业务服务定制,框架层提供调用健康检查逻辑的机制,服务发现和负载均衡则集成在服务客户端框架中。
  2. 监控日志,框架一方面要记录重要的框架层日志、metrics和调用链数据,还要将日志、metrics等接口暴露出来,让业务层能根据需要记录业务日志数据。在运行环境中,所有日志数据一般集中落地到企业后台日志系统,做进一步分析和处理。
  3. REST/RPC和序列化,框架层要支持将业务逻辑以HTTP/REST或者RPC方式暴露出来,HTTP/REST是当前主流API暴露方式,在性能要求高的场合则可采用Binary/RPC方式。针对当前多样化的设备类型(浏览器、普通PC、无线设备等),框架层要支持可定制的序列化机制,例如,对浏览器,框架支持输出Ajax友好的JSON消息格式,而对无线设备上的Native App,框架支持输出性能高的Binary消息格式。
  4. 配置,除了支持普通配置文件方式的配置,框架层还可集成动态运行时配置,能够在运行时针对不同环境动态调整服务的参数和配置。
  5. 限流和容错,框架集成限流容错组件,能够在运行时自动限流和容错,保护服务,如果进一步和动态配置相结合,还可以实现动态限流和熔断。
  6. 管理接口,框架集成管理接口,一方面可以在线查看框架和服务内部状态,同时还可以动态调整内部状态,对调试、监控和管理能提供快速反馈。Spring Boot微框架的Actuator模块就是一个强大的管理接口。
  7. 统一错误处理,对于框架层和服务的内部异常,如果框架层能够统一处理并记录日志,对服务监控和快速问题定位有很大帮助。
  8. 安全,安全和访问控制逻辑可以在框架层统一进行封装,可做成插件形式,具体业务服务根据需要加载相关安全插件。
  9. 文档自动生成,文档的书写和同步一直是一个痛点,框架层如果能支持文档的自动生成和同步,会给使用API的开发和测试人员带来极大便利。Swagger是一种流行Restful API的文档方案。

微服务系统底座

一个完整的微服务系统,它的底座最少要包含以下功能:

  • 日志和审计,主要是日志的汇总,分类和查询
  • 监控和告警,主要是监控每个服务的状态,必要时产生告警
  • 消息总线,轻量级的MQ或HTTP
  • 注册发现
  • 负载均衡
  • 部署和升级
  • 事件调度机制
  • 资源管理,如:底层的虚拟机,物理机和网络管理

以下功能不是最小集的一部分,但也属于底座功能:

  • 认证和鉴权
  • 微服务统一代码框架,支持多种编程语言
  • 统一服务构建和打包
  • 统一服务测试
  • 微服务CI/CD流水线
  • 服务依赖关系管理
  • 统一问题跟踪调试框架,俗称调用链
  • 灰度发布
  • 蓝绿部署

容器(Docker)与微服务

•容器够小
–解决微服务对机器数量的诉求
•容器独立
–解决多语言问题
•开发环境与生产环境相同
–单机开发、提升效率
•容器效率高
–省钱
•代码/image一体化
–可复用管理系统
•容器的横向与纵向扩容
–可复制
–可动态调节CPU与内存

容器(Docker)与微服务

•Image管理
•系统安全管理
•授权管理
•系统成熟度
•社区成熟度

开发方式影响

随着持续交付概念推广以及Docker容器普及,微服务将这两种理念和技术结合起来,形成新的微服务 API 平台的开发模式,提出了容器化微服务的持续交付概念。
下图传统Monolithic的DevOps开发队伍方式:

这种整体型架构要求产品队伍横跨产品管理 Dev开发 QA DBA 以及系统运营管理,而微服务架构引入以后,如下图:

微服务促进了DevOps方式的重组,将一个大臃肿的整体产品开发队伍切分为根据不同微服务的划分的产品队伍,以及一个大的整体的平台队伍负责运营管理,两者之间通过API交互,做到了松耦合隔绝。

  • 首先需要考虑构建DevOps能力,这是保证微服务架构在持续交付和应对复杂运维问题的动力之源;
  • 其次保持服务持续演进,使之能够快速、低成本地被拆分和合并,以快速响应业务的变化;
  • 同时要保持团队和架构对齐。微服务貌似是技术层面的变革,但它对团队结构和组织文化有很强的要求和影响。识别和构建匹配架构的团队是解决问题的另一大支柱。
  • 最后,打造持续改进的自组织文化是实施微服务的关键基石。只有持续改进,持续学习和反馈,持续打造这样一个文化氛围和团队,微服务架构才能持续发展下去,保持新鲜的生命力,从而实现我们的初衷。

    微服务的实施是有一定的先决条件:基础的运维能力(如监控、快速配置、快速部署)需提前构建,否则就会陷入如我们般被动的局面。推荐采用基础设施及代码的实践,通过代码来描述计算和网络基础设施的方法,使得图案度i可以快速安全的搭建和处理由新的配置代替的服务器,服务器之间可以拥有更高的一致性,降低了在“我的环境工作,而你的环境不工作”的可能,也是为后续的发布策略和运维提供更好的支撑。

由于Docker引入,不同的微服务可以使用不同的技术架构,比如Node.js Java Ruby Python等等,这些单个的服务都可以独立完成交付生命周期,如下:

微服务案例

Netflix的微服务架构如下,着重全球分发 高可扩展性和可用性:

Twitter的微服务架构,注重高效的可扩展的数据中心:

133月/180

一分钟让你明白DevOps

发布在 邵珠庆

自动草稿

历史回顾

为了能够更好的理解什么是DevOps,我们很有必要对当时还只有程序员(此前还没有派生出开发者,前台工程师,后台工程师之类)这个称号存在的历史进行一下回顾。

如编程之道中所言:

老一辈的程序员是神秘且深奥的。我们没法揣摩他们的想法,我们所能做的只是描述一下他们的表象。

清醒的像一只游过水面的狐狸

警惕的像一位战场上的将军

友善的像一位招待客人的女主人

单纯的像一块未经雕琢的木头

深邃的像一潭幽深洞穴中漆黑的池水

程序员开发了机器语言,机器语言又产生了汇编语言,汇编语言产生了编译器,如今的语言已经多不胜数。每一种语言都有其各自的谦卑用途。每一种语言都表达出软件的阴和阳。每一种语言都在此道之中有其一席之地。

遥想当年,软件程序员的大部分办公司那时还被称作实验室,程序员那时还叫做科学家。为了开发出一套优秀的软件,程序员们必须深入了解他们需要的应用相关的所有问题。他们必须清楚知道这个软件应用在什么场合,这个软件是必须在什么系统上运行。本质上说,程序员对所要开发的软件的所有环节都有透彻的了解,从规格说明书编写、到软件开发、到测试、到部署、再到技术支持。

过了不久,人类(客户)贪婪的特性就开始表现出来,他们开始不断的进行更多的索求。更快的速度,更多的功能,更多的用户,更多的所有所有。

作为一类谦虚、谦卑、且平静的生物,我们的老一辈程序员们将很难在这种爆发性的过度的需求索取中幸存。最好的取胜办法就是往不同的方向进化成不同的新物种。很快,程序员这个称号就开始绝迹于江湖,而那些叫做开发者、软件工程师、网络管理员、数据库开发者、网页开发者、系统架构师、测试工程师等等更多的新物种就开始诞生。快速进化和快速适应外界的挑战成为了他们的DNA的一部分。这些新的种族可以在几个星期内就完成进化。网页开发者很快就能进化成后台开发者,前台开发者,PHP开发者,Ruby开发者,Angular开发者…多得让人侧目。

很快他们就都忘却了他们都是起源于程序员这个共同的祖先的事实,忘却了曾经有过这么一个单纯且平静的,想要让这个世界变得更好的科学家。然后他们开始不断的剑拔弩张,都声称自己才是“程序员”的纯血统继承人。

随着时间的转移,各门各派开始独占山头,很少进行交流互动,只有在迫不得已的时刻才会进行沟通。他们开始不再为同源的遥远的同宗兄弟们的成功而欢呼雀跃,甚至再也不会时把的遥寄张明信片进行嘘寒问暖。

但是在深夜仰望星空的时候,他们还是会发现他们的心底深处的程序员基因还是会不停的闪烁着,期盼着这闪烁的火花能照亮整个银河系并带来和平。

自动草稿

在这场自私且以自我为中心的欲征服世界的赛跑旅程里,程序员的子孙们早把他们真正的工作目标置之脑后-为客户解决问题。面对一拖再拖的项目交付日期,昂贵的开发代价,甚至最终失败的项目,客户们开始对这种情况深恶痛绝。

偶尔,也会有一个闪亮的明星站出来,灵机一动的提供一种办法来尝试结束这种混乱并带来和平。所以瀑布开发流程就应运而生了。这是一个非常了不起的创意,因为它利用了不同团队的开发者们只在必须的时候才进行沟通的这个事实。当一个团队完成了他们的工作的时候,它就会和下游的团队进行交流并把任务进行往下传,如此一级接一级的传递下去,永不回首。

自动草稿

这种方式在一段时间内发挥了效用,但很快,一如既往,贪婪的人们(客户)又开始提出更多的诉求。他们希望能够更多地参加到整个软件的开发流程中来,不时的提出他们的建议,甚至在很晚的时候还提出改需求这种丧心病狂的事情来。

结果就是如大家有目共睹的事实一样,软件项目非常容易失败这个说法已经作为一个行业标准被人们所接受。数据表明超过50%的项目最终都是以失败告终的。更可悲的是,在当时看来,人们对这种情况是束手无策。

值得庆幸的是,每一个时代总会有那么几个思想开放的英雄如漆黑中的萤火虫般冒出来。他们知道这些不同团队的开发者们必须要找到一个可以协同工作、进行交流、并且能够弹性的向客户保证对方将会拿到最优的解决方案的方式。这种尝试最早可以追溯到1957年,伟大的约翰·冯·诺依曼和同行们的努力。但是我们最终却是等到2001年才收获到革命的果实,当时行业的十多个精英创造出了如今闻名世界的“敏捷宣言”。

敏捷宣言基于以下十二条原则:

我们的首要任务是通过尽早地、持续地交付可评价的软件来使客户满意。

乐于接受需求变更,即使是在开发后期也应如此。敏捷过程能够驾驭变化,从而为客户赢得竞争优势。

频繁交付可使用的软件,交付间隔越短越好,可以从几个星期到几个月。

在整个项目开发期间,业务人员和开发人员必须朝夕工作在一起。

围绕那些有推动力的人们来构建项目。给予他们所需的环境和支持,并且信任他们能够把工作完成好。

与开发团队以及在开发团队内部最快速、有效的传递信息的方法就是,面对面的交谈。

可使用的软件是进度的主要衡量指标。

敏捷过程提倡可持续发展。出资人、开发人员以及使用者应该总是共同维持稳定的开发速度。

为了增强敏捷能力,应持续关注技术上的杰出成果和良好的设计。

简洁——最大化不必要工作量的艺术——是至关重要的。

最好的架构、需求和设计都源自自我组织的团队。

团队应该定期反思如何能变得更有战斗力,然后相应地转变并调整其行为。

敏捷宣言是为银河系带来和平以及维护各自的平衡所迈出的很重要的第一步。在很长的时间里,相比此前基于流程和机械化的方式,这是第一次基于文化和“人性”来将不同的关键项目关系人连接在一起的方式。人们开始互相交流,进行基本的碰头会议,并开始不断的交流意见和看法。他们开始意识到他们是有着很多比想象中还多的共同点的,客户也开始成为他们之中的一员,而不再是像以往一样只是往项目砸钱然后开始求神拜佛祈求一切顺利如愿。

自动草稿

尽管前面还是有不少的障碍需要克服,但是未来已经光明了许多。敏捷意味着开放和拥抱(需求)改变。但是,如果改变过多的话,人们就很难专注到最终的目标和交付上来。此时精益软件开发就开始破土而出了。

因为对精益软件开发的着迷以及为了达成放逐和驱赶风险的目的,一些程序员的子孙们就开始探首窗外,开始向软件之外的行业进行取经。他们从一家主要的汽车生产商身上找到了救赎。丰田生产系统在精益上面的成就是不可思议的,同时它们的精益生产的经验也是很容易应用到软件开发上来的。

精益有以下7个原则:

杜绝浪费

内建质量

创建知识(放大学习)

延迟决策(尽量延迟决定)

快速交付

尊重人员(团队授权)

全局优化

将这些放到敏捷上去的话,精益原则就能让人们在从精神上关注做正确的事情,同时还能够让整个开发流程拥有足够的弹性。

一旦敏捷和精益软件开发被软件开发团队采纳,那么下一步就是把这一套原则应用到IT团队上来。把IT也纳入到整体战略上,然后我们就来到了DevOps跟前了!

进入DevOps – 高速公路的三条车道

老一派的软件开发团队成员会包含业务分析员,系统架构师,前端开发者,后端开发者,测试员,等等。优化如敏捷和精益原则等的软件开发流程的关注点就在这些地方。比如,软件一旦达到”可以生产“的程度,就会发到系统工程师、发布工程师、DBA、网络工程师,安全专家这些“运维人员”的手上。这里该如何将横在Dev(开发)和Ops(运维)之间的鸿沟给填平,这就是DevOps的主要关注点了。

DevOps是在整个IT价值流中实施精益原则的结果。IT价值流将开发延伸至生产,将由程序员这个遥远的祖宗所繁衍的所有子孙给联合在一起。
这是来自Gene Kim的对DevOps的最好的解析,如果你还没有看过他的《凤凰项目》这本书的话,我建议你真的该好好花时间看看。

你不应该重新招聘DevOps工程师,且DevOps也不应该是一个IT的新部门。DevOps是一种文化,一种理念,且是和IT糅合成一整体的。世间没有任何工具可以把你的IT变成一个DevOps组织,也没有任何自动化方式可以指引你该如何为你的客户提供最大化的效益。

DevOps通常作为下面这三个方式而为人所熟知,而在我眼里我是把它们看成是一条高速公路上的三条车道。你从第一条车道开始,然后加速进入到第二条车道,最终在第三车道上高速行驶。

车道1 – 系统级别的整体效率考量是最主要的关注点,这超过对系统中任何一个单独个体元素的考虑

车道2 – 确保能提供持续不断的反馈循环,且这些反馈不被忽视。

车道3 – 持续的学习和吸取经验,不停的进步,快速的失败。

车道1 – 获取速度

要采纳DevOps的原则,理解整个运作系统的重要性并对工作事项进行合适的优先级排序是组织首先要学的事情。在整个价值流中不能允许任何人产生瓶颈并降低整个工作流程。

自动草稿

确保工作流程的不可中断是身处流程中的所有成员的终极目标。无论一个成员或者团队的角色是什么,他们都必须力图对整个系统进行深入的理解。这种思维方式对质量会有着直接的影响,因为缺陷永远不会被下放到“下游“中,这样做的话将会导致瓶颈的产生。

确保整个工作流程不会被瓶颈堵塞住还不够。一个高产的组织应该时常考虑该如何提升整个工作流程。有很多方法论可以做到这一点,你不妨去看下“约束理论”,“六西格玛”,精益,或者丰田生产系统。

DevOps原则不关心你身处哪个团队,你是否是系统架构师,DBA,QA,或者是网络管理员。相同的规则覆盖所有的成员,每个成员都应该遵循两个简单的原则:

保持系统运作流程不可中断

随时提升和优化工作流程

车道2 – 换挡加速

不可中断的系统流程是定向的,且预期是从开发流向运维。在一个理想的世界中,这就意味着快速的开发出高质量的软件,部署,并为客户提供价值。

但是,DevOps并非乌托邦式的理想国。如果单向的交付方式是可行的话,我们的瀑布模式早就能胜任了。评估可交付产品和整个流程中的交流对确保质量是至关重要的。这里首个必须实现的”面向上游”的交流通道是从Ops到Dev。

自动草稿

我们独自意淫是件非常容易的事情,但是获取别人的反馈和提供反馈给别人才是探究事实真相的正确方法。下游的每一步(反馈)都必须紧跟着有一个上游的确定。

你如何建立反馈循环机制并不重要。你可以邀请开发人员加入技术支持团队的会议,或者将网络管理员放到Sprint计划会议中去。一旦你的反馈机制就绪,反馈能够被接收并被处理,你就已经可以说是走到了DevOps高速车道上来了。

车道3 – 飞速前进

DevOps这条快速车道并不适合意志脆弱的人。为了进入这条车道,你的组织必须要足够的成熟。这里充满了冒险和对失败教训的学习,不断的尝试,并认同屡败屡战和不断的实践是走向成功这条康庄大道的前提条件。在这里你应该会经常听到”套路“这个词,这是有原因的。不断的训练和重复所以能培养出大师,是因为其让复杂的动作常规化。

但是在你要将这些复杂的动作连接起来之前,你很有必要先去掌握好每一个单独步骤。

“适合大师的动作并不适合新手,脱胎换骨之前你必须先要明白道的真谛。“

自动草稿

DevOps的第三个方式/快速车道包括每天分配时间来持续的进行试验,时常的奖励敢于冒险的团队,并将缺陷特意引入到运作系统上来以增加系统的抗击打能力。

为了确保你的组织能够消化好这些方法,你必须在每个团队之间建立好频繁的反馈循环,同时需要确保所有的瓶颈都能够及时的被清理掉,并确保整个系统的运作流程是不可中断的。

实施好这些措施可以让你的组织时刻保持警惕,并能够快速且高效的应对挑战。

概要 – DevOps清单

下面是一张你可以用来检验你的组织对DevOps的应用情况的清单。当然你也可以在文章评论后面给出你的观点。

开发团队和运维团队之间没有障碍。两者皆是DevOps统一流程的一部分。

从一个团队流到另一个团队的工作都能够得到高质量的验证

工作没有堆积,所有的瓶颈都已经被处理好。

开发团队没有占用运维团队的时间,因为部署和维护都是处于同一个时间盒里面的。

开发团队不会在周五下午5点后把代码交付进行部署,剩下运维团队周末加班加点来给他们擦屁股

开发环境标准化,运维人员可以很容易將之扩展并进行部署

开发团队可以找到合适的方式交付新版本,且运维团队可以轻易的进行部署。

每个团队之间的通信线路都很明确

所有的团队成员都有时间去为改善系统进行试验和实践

常规性的引入(或者模拟)缺陷到系统中来并得到处理。每次学习到的经验都应该文档化下来并分享给相关人员。事故处理成为日常工作的一部分,且处理方式是已知的

总结

使用现代化的DevOps工具,如Chef、Docker、Ansible、Packer、Troposphere、Consul、Jenkins、SonarQube、AWS等,并不代表你就在正确的应用DevOps的原则。DevOps是一种思维方式。我们所有人都是该系统流程的一部分,我们一起分享共同的时光和交付价值。每个参加到这个软件交付流程上来的成员都能够加速或减缓整个系统的运作速度。系统出现的一个缺陷,以及错误配置的团队之间的“防火墙”,都可能会使得整个系统瘫痪,

所有的人都是DevOps的一部分,一旦你的组织明白了这一点,能够帮你管理好这些的工具和技术栈就自然而然的会出现在你眼前了。

93月/180

23种设计模式总结

发布在 邵珠庆

1.单例模式(Singleton Pattern)

定义:Ensure a class has only one instance, and provide a global point of access to it.(确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。)

通用代码:(是线程安全的)
public class Singleton {
     private static final Singleton singleton = new Singleton();
     //限制产生多个对象
     private Singleton(){
     }
     //通过该方法获得实例对象
     public static Singleton getSingleton(){
             return singleton;
     }  
     //类中其他方法,尽量是static
     public static void doSomething(){
     }
}
使用场景:
● 要求生成唯一序列号的环境;
● 在整个项目中需要一个共享访问点或共享数据,例如一个Web页面上的计数器,可以不用把每次刷新都记录到数据库中,使用单例模式保持计数器的值,并确保是线程安全的;
● 创建一个对象需要消耗的资源过多,如要访问IO和数据库等资源;
● 需要定义大量的静态常量和静态方法(如工具类)的环境,可以采用单例模式(当然,也可以直接声明为static的方式)。
线程不安全实例:

public class Singleton {
     private static Singleton singleton = null; 
     //限制产生多个对象
     private Singleton(){
     }  
     //通过该方法获得实例对象
     public static Singleton getSingleton(){
             if(singleton == null){
                    singleton = new Singleton();
             }
             return singleton;
     }
}
解决办法:
在getSingleton方法前加synchronized关键字,也可以在getSingleton方法内增加synchronized来实现。最优的办法是如通用代码那样写。

2.工厂模式

定义:Define an interface for creating an object,but let subclasses decide which class to instantiate.Factory Method lets a class defer instantiation to subclasses.(定义一个用于创建对象的接口,让子类决定实例化哪一个类。工厂方法使一个类的实例化延迟到其子类。)
   
Product为抽象产品类负责定义产品的共性,实现对事物最抽象的定义;
Creator为抽象创建类,也就是抽象工厂,具体如何创建产品类是由具体的实现工厂ConcreteCreator完成的。
具体工厂类代码:
public class ConcreteCreator extends Creator {
public <T extends Product> T createProduct(Class<T> c){
             Product product=null;
             try {
                    product = (Product)Class.forName(c.getName()).newInstance();
             } catch (Exception e) {
                    //异常处理
             }
             return (T)product;         
     }
}
简单工厂模式:
一个模块仅需要一个工厂类,没有必要把它产生出来,使用静态的方法

多个工厂类:
每个人种(具体的产品类)都对应了一个创建者,每个创建者独立负责创建对应的产品对象,非常符合单一职责原则
代替单例模式:
单例模式的核心要求就是在内存中只有一个对象,通过工厂方法模式也可以只在内存中生产一个对象
延迟初始化:
ProductFactory负责产品类对象的创建工作,并且通过prMap变量产生一个缓存,对需要再次被重用的对象保留
使用场景:jdbc连接数据库,硬件访问,降低对象的产生和销毁

3.抽象工厂模式(Abstract Factory Pattern)

定义:Provide an interface for creating families of related or dependent objects without specifying their concrete classes.(为创建一组相关或相互依赖的对象提供一个接口,而且无须指定它们的具体类。)
抽象工厂模式通用类图:
抽象工厂模式通用源码类图:
抽象工厂类代码:
public abstract class AbstractCreator {
     //创建A产品家族
     public abstract AbstractProductA createProductA(); 
     //创建B产品家族
     public abstract AbstractProductB createProductB();
}
使用场景:
一个对象族(或是一组没有任何关系的对象)都有相同的约束。
涉及不同操作系统的时候,都可以考虑使用抽象工厂模式

4.模板方法模式(Template Method Pattern)

定义:Define the skeleton of an algorithm in an operation,deferring some steps to subclasses.Template Method lets subclasses redefine certain steps of an algorithm without changing the algorithm's structure.(定义一个操作中的算法的框架,而将一些步骤延迟到子类中。使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。)

AbstractClass叫做抽象模板,它的方法分为两类:
● 基本方法
基本方法也叫做基本操作,是由子类实现的方法,并且在模板方法被调用。
● 模板方法
可以有一个或几个,一般是一个具体方法,也就是一个框架,实现对基本方法的调度,完成固定的逻辑。
注意: 为了防止恶意的操作,一般模板方法都加上final关键字,不允许被覆写。
具体模板:ConcreteClass1和ConcreteClass2属于具体模板,实现父类所定义的一个或多个抽象方法,也就是父类定义的基本方法在子类中得以实现
使用场景:
● 多个子类有公有的方法,并且逻辑基本相同时。
● 重要、复杂的算法,可以把核心算法设计为模板方法,周边的相关细节功能则由各个子类实现。
● 重构时,模板方法模式是一个经常使用的模式,把相同的代码抽取到父类中,然后通过钩子函数(见“模板方法模式的扩展”)约束其行为。

5.建造者模式(Builder Pattern)

定义:Separate the construction of a complex object from its representation so that the same construction process can create different representations.(将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。)
● Product产品类
通常是实现了模板方法模式,也就是有模板方法和基本方法,例子中的BenzModel和BMWModel就属于产品类。
● Builder抽象建造者
规范产品的组建,一般是由子类实现。例子中的CarBuilder就属于抽象建造者。
● ConcreteBuilder具体建造者
实现抽象类定义的所有方法,并且返回一个组建好的对象。例子中的BenzBuilder和BMWBuilder就属于具体建造者。
● Director导演类
负责安排已有模块的顺序,然后告诉Builder开始建造
使用场景:
● 相同的方法,不同的执行顺序,产生不同的事件结果时,可以采用建造者模式。
● 多个部件或零件,都可以装配到一个对象中,但是产生的运行结果又不相同时,则可以使用该模式。
● 产品类非常复杂,或者产品类中的调用顺序不同产生了不同的效能,这个时候使用建造者模式非常合适。
建造者模式与工厂模式的不同:
建造者模式最主要的功能是基本方法的调用顺序安排,这些基本方法已经实现了,顺序不同产生的对象也不同;
工厂方法则重点是创建,创建零件是它的主要职责,组装顺序则不是它关心的。

6.代理模式(Proxy Pattern)

定义:Provide a surrogate or placeholder for another object to control access to it.(为其他对象提供一种代理以控制对这个对象的访问。)

● Subject抽象主题角色
抽象主题类可以是抽象类也可以是接口,是一个最普通的业务类型定义,无特殊要求。
● RealSubject具体主题角色
也叫做被委托角色、被代理角色。它才是冤大头,是业务逻辑的具体执行者。
● Proxy代理主题角色
也叫做委托类、代理类。它负责对真实角色的应用,把所有抽象主题类定义的方法限制委托给真实主题角色实现,并且在真实主题角色处理完毕前后做预处理和善后处理工作。
普通代理和强制代理:
普通代理就是我们要知道代理的存在,也就是类似的GamePlayerProxy这个类的存在,然后才能访问;
强制代理则是调用者直接调用真实角色,而不用关心代理是否存在,其代理的产生是由真实角色决定的。
普通代理:

在该模式下,调用者只知代理而不用知道真实的角色是谁,屏蔽了真实角色的变更对高层模块的影响,真实的主题角色想怎么修改就怎么修改,对高层次的模块没有任何的影响,只要你实现了接口所对应的方法,该模式非常适合对扩展性要求较高的场合。
强制代理:
强制代理的概念就是要从真实角色查找到代理角色,不允许直接访问真实角色。高层模块只要调用getProxy就可以访问真实角色的所有方法,它根本就不需要产生一个代理出来,代理的管理已经由真实角色自己完成。
动态代理:
根据被代理的接口生成所有的方法,也就是说给定一个接口,动态代理会宣称“我已经实现该接口下的所有方法了”。

两条独立发展的线路。动态代理实现代理的职责,业务逻辑Subject实现相关的逻辑功能,两者之间没有必然的相互耦合的关系。通知Advice从另一个切面切入,最终在高层模块也就是Client进行耦合,完成逻辑的封装任务。
动态代理调用过程示意图:

动态代理的意图:横切面编程,在不改变我们已有代码结构的情况下增强或控制对象的行为。
首要条件:被代理的类必须要实现一个接口。

7.原型模式(Prototype Pattern)

定义:Specify the kinds of objects to create using a prototypical instance,and create new objects by copying this prototype.(用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。)

原型模式通用代码:
public class PrototypeClass  implements Cloneable{
     //覆写父类Object方法
     @Override
     public PrototypeClass clone(){
             PrototypeClass prototypeClass = null;
             try {
                    prototypeClass = (PrototypeClass)super.clone();
             } catch (CloneNotSupportedException e) {
                    //异常处理
             }
             return prototypeClass;
     }
}

 

原型模式实际上就是实现Cloneable接口,重写clone()方法。
使用原型模式的优点:
● 性能优良
原型模式是在内存二进制流的拷贝,要比直接new一个对象性能好很多,特别是要在一个循环体内产生大量的对象时,原型模式可以更好地体现其优点。
● 逃避构造函数的约束
这既是它的优点也是缺点,直接在内存中拷贝,构造函数是不会执行的(参见13.4节)。
使用场景:
● 资源优化场景
类初始化需要消化非常多的资源,这个资源包括数据、硬件资源等。
● 性能和安全要求的场景
通过new产生一个对象需要非常繁琐的数据准备或访问权限,则可以使用原型模式。
● 一个对象多个修改者的场景
一个对象需要提供给其他对象访问,而且各个调用者可能都需要修改其值时,可以考虑使用原型模式拷贝多个对象供调用者使用。
浅拷贝和深拷贝:
浅拷贝:Object类提供的方法clone只是拷贝本对象,其对象内部的数组、引用对象等都不拷贝,还是指向原生对象的内部元素地址,这种拷贝就叫做浅拷贝,其他的原始类型比如int、long、char、string(当做是原始类型)等都会被拷贝。
注意: 使用原型模式时,引用的成员变量必须满足两个条件才不会被拷贝:一是类的成员变量,而不是方法内变量;二是必须是一个可变的引用对象,而不是一个原始类型或不可变对象。
深拷贝:对私有的类变量进行独立的拷贝
  如:thing.arrayList = (ArrayList<String>)this.arrayList.clone();

8.中介者模式

定义:Define an object that encapsulates how a set of objects interact.Mediator promotes loose coupling by keeping objects from referring to each other explicitly,and it lets you vary their interaction independently.(用一个中介对象封装一系列的对象交互,中介者使各对象不需要显示地相互作用,从而使其耦合松散,而且可以独立地改变它们之间的交互。)

● Mediator 抽象中介者角色
抽象中介者角色定义统一的接口,用于各同事角色之间的通信。
● Concrete Mediator 具体中介者角色
具体中介者角色通过协调各同事角色实现协作行为,因此它必须依赖于各个同事角色。
● Colleague 同事角色
每一个同事角色都知道中介者角色,而且与其他的同事角色通信的时候,一定要通过中介者角色协作。每个同事类的行为分为两种:一种是同事本身的行为,比如改变对象本身的状态,处理自己的行为等,这种行为叫做自发行为(Self-Method),与其他的同事类或中介者没有任何的依赖;第二种是必须依赖中介者才能完成的行为,叫做依赖方法(Dep-Method)。
通用抽象中介者代码:
public abstract class Mediator {
     //定义同事类
     protected ConcreteColleague1 c1;
     protected ConcreteColleague2 c2;
     //通过getter/setter方法把同事类注入进来
     public ConcreteColleague1 getC1() {
             return c1;
     }
     public void setC1(ConcreteColleague1 c1) {
             this.c1 = c1;
     }
     public ConcreteColleague2 getC2() {
             return c2;
}
     public void setC2(ConcreteColleague2 c2) {
             this.c2 = c2;
     }
     //中介者模式的业务逻辑
     public abstract void doSomething1();
     public abstract void doSomething2();
}

 

ps:使用同事类注入而不使用抽象注入的原因是因为抽象类中不具有每个同事类必须要完成的方法。即每个同事类中的方法各不相同。
问:为什么同事类要使用构造函数注入中介者,而中介者使用getter/setter方式注入同事类呢?
这是因为同事类必须有中介者,而中介者却可以只有部分同事类。
使用场景:
中介者模式适用于多个对象之间紧密耦合的情况,紧密耦合的标准是:在类图中出现了蜘蛛网状结构,即每个类都与其他的类有直接的联系。

9.命令模式

定义:Encapsulate a request as an object,thereby letting you parameterize clients with different requests,queue or log requests,and support undoable operations.(将一个请求封装成一个对象,从而让你使用不同的请求把客户端参数化,对请求排队或者记录请求日志,可以提供命令的撤销和恢复功能。)

● Receive接收者角色
该角色就是干活的角色,命令传递到这里是应该被执行的,具体到我们上面的例子中就是Group的三个实现类(需求组,美工组,代码组)。
● Command命令角色
需要执行的所有命令都在这里声明。
● Invoker调用者角色
接收到命令,并执行命令。在例子中,我(项目经理)就是这个角色。
使用场景:
认为是命令的地方就可以采用命令模式,例如,在GUI开发中,一个按钮的点击是一个命令,可以采用命令模式;模拟DOS命令的时候,当然也要采用命令模式;触发-反馈机制的处理等。

10.责任链模式

定义:Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the request.Chain the receiving objects and pass the request along the chain until an object handles it.(使多个对象都有机会处理请求,从而避免了请求的发送者和接受者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递该请求,直到有对象处理它为止。)

抽象处理者的代码:
public abstract class Handler {
     private Handler nextHandler;
     //每个处理者都必须对请求做出处理
     public final Response handleMessage(Request request){
             Response response = null;  
             //判断是否是自己的处理级别
             if(this.getHandlerLevel().equals(request.getRequestLevel())){
                    response = this.echo(request);
             }else{  //不属于自己的处理级别
                    //判断是否有下一个处理者
                    if(this.nextHandler != null){
                            response = this.nextHandler.handleMessage(request);
                    }else{
                            //没有适当的处理者,业务自行处理
                    }
             }
             return response;
     }
     //设置下一个处理者是谁
     public void setNext(Handler _handler){
             this.nextHandler = _handler;
     }
     //每个处理者都有一个处理级别
     protected abstract Level getHandlerLevel();
     //每个处理者都必须实现处理任务
     protected abstract Response echo(Request request);
}

 

抽象的处理者实现三个职责:
一是定义一个请求的处理方法handleMessage,唯一对外开放的方法;
二是定义一个链的编排方法setNext,设置下一个处理者;
三是定义了具体的请求者必须实现的两个方法:定义自己能够处理的级别getHandlerLevel和具体的处理任务echo。
注意事项:
链中节点数量需要控制,避免出现超长链的情况,一般的做法是在Handler中设置一个最大节点数量,在setNext方法中判断是否已经是超过其阈值,超过则不允许该链建立,避免无意识地破坏系统性能。

11.装饰模式(Decorator Pattern)

定义:Attach additional responsibilities to an object dynamically keeping the same interface.Decorators provide a flexible alternative to subclassing for extending functionality.(动态地给一个对象添加一些额外的职责。就增加功能来说,装饰模式相比生成子类更为灵活。)

● Component抽象构件
Component是一个接口或者是抽象类,就是定义我们最核心的对象,也就是最原始的对象,如上面的成绩单。
注意:在装饰模式中,必然有一个最基本、最核心、最原始的接口或抽象类充当Component抽象构件。
● ConcreteComponent 具体构件
ConcreteComponent是最核心、最原始、最基本的接口或抽象类的实现,你要装饰的就是它。
● Decorator装饰角色
一般是一个抽象类,做什么用呢?实现接口或者抽象方法,它里面可不一定有抽象的方法呀,在它的属性里必然有一个private变量指向Component抽象构件。
● 具体装饰角色
ConcreteDecoratorA和ConcreteDecoratorB是两个具体的装饰类,你要把你最核心的、最原始的、最基本的东西装饰成其他东西,上面的例子就是把一个比较平庸的成绩单装饰成家长认可的成绩单。
使用场景:
● 需要扩展一个类的功能,或给一个类增加附加功能。
● 需要动态地给一个对象增加功能,这些功能可以再动态地撤销。
● 需要为一批的兄弟类进行改装或加装功能,当然是首选装饰模式。

12.策略模式(Strategy Pattern)

定义:Define a family of algorithms,encapsulate each one,and make them interchangeable.(定义一组算法,将每个算法都封装起来,并且使它们之间可以互换。)

● Context封装角色
它也叫做上下文角色,起承上启下封装作用,屏蔽高层模块对策略、算法的直接访问,封装可能存在的变化。
● Strategy抽象策略角色
策略、算法家族的抽象,通常为接口,定义每个策略或算法必须具有的方法和属性。各位看官可能要问了,类图中的AlgorithmInterface是什么意思,嘿嘿,algorithm是“运算法则”的意思,结合起来意思就明白了吧。
● ConcreteStrategy具体策略角色(多个)
实现抽象策略中的操作,该类含有具体的算法。
使用场景:
● 多个类只有在算法或行为上稍有不同的场景。
● 算法需要自由切换的场景。
● 需要屏蔽算法规则的场景。
注意事项:具体策略数量超过4个,则需要考虑使用混合模式
策略模式扩展:策略枚举
public enum Calculator {
     //加法运算
     ADD("+"){
             public int exec(int a,int b){
                    return a+b;
             }
     },
     //减法运算
     SUB("-"){
             public int exec(int a,int b){
                    return a - b;
             }
     };
     String value = "";
     //定义成员值类型
     private Calculator(String _value){
             this.value = _value;
     }
     //获得枚举成员的值
     public String getValue(){
             return this.value;
     }
     //声明一个抽象函数
     public abstract int exec(int a,int b);
}

 

定义:
● 它是一个枚举。
● 它是一个浓缩了的策略模式的枚举。
注意:
受枚举类型的限制,每个枚举项都是public、final、static的,扩展性受到了一定的约束,因此在系统开发中,策略枚举一般担当不经常发生变化的角色。
致命缺陷:
所有的策略都需要暴露出去,由客户端决定使用哪一个策略。

13.适配器模式(Adapter Pattern)

定义:Convert the interface of a class into another interface clients expect.Adapter lets classes work together that couldn't otherwise because of incompatible interfaces.(将一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能够在一起工作。)
类适配器:

● Target目标角色
该角色定义把其他类转换为何种接口,也就是我们的期望接口,例子中的IUserInfo接口就是目标角色。
● Adaptee源角色
你想把谁转换成目标角色,这个“谁”就是源角色,它是已经存在的、运行良好的类或对象,经过适配器角色的包装,它会成为一个崭新、靓丽的角色。
● Adapter适配器角色
适配器模式的核心角色,其他两个角色都是已经存在的角色,而适配器角色是需要新建立的,它的职责非常简单:把源角色转换为目标角色,怎么转换?通过继承或是类关联的方式。
使用场景
你有动机修改一个已经投产中的接口时,适配器模式可能是最适合你的模式。比如系统扩展了,需要使用一个已有或新建立的类,但这个类又不符合系统的接口,怎么办?使用适配器模式,这也是我们例子中提到的。
注意事项:
详细设计阶段不要考虑使用适配器模式,使用主要场景为扩展应用中。
对象适配器:

 对象适配器和类适配器的区别:
类适配器是类间继承,对象适配器是对象的合成关系,也可以说是类的关联关系,这是两者的根本区别。(实际项目中对象适配器使用到的场景相对比较多)。

14.迭代器模式(Iterator Pattern)

定义:Provide a way to access the elements of an aggregate object sequentially without exposing its underlying representation.(它提供一种方法访问一个容器对象中各个元素,而又不需暴露该对象的内部细节。)

● Iterator抽象迭代器
抽象迭代器负责定义访问和遍历元素的接口,而且基本上是有固定的3个方法:first()获得第一个元素,next()访问下一个元素,isDone()是否已经访问到底部(Java叫做hasNext()方法)。
● ConcreteIterator具体迭代器
具体迭代器角色要实现迭代器接口,完成容器元素的遍历。
● Aggregate抽象容器
容器角色负责提供创建具体迭代器角色的接口,必然提供一个类似createIterator()这样的方法,在Java中一般是iterator()方法。
● Concrete Aggregate具体容器
具体容器实现容器接口定义的方法,创建出容纳迭代器的对象。
ps:迭代器模式已经被淘汰,java中已经把迭代器运用到各个聚集类(collection)中了,使用java自带的迭代器就已经满足我们的需求了。

15.组合模式((Composite Pattern))

定义:Compose objects into tree structures to represent part-whole hierarchies.Composite lets clients treat individual objects and compositions of objects uniformly.(将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。)

● Component抽象构件角色
定义参加组合对象的共有方法和属性,可以定义一些默认的行为或属性,比如我们例子中的getInfo就封装到了抽象类中。
● Leaf叶子构件
叶子对象,其下再也没有其他的分支,也就是遍历的最小单位。
● Composite树枝构件
树枝对象,它的作用是组合树枝节点和叶子节点形成一个树形结构。
树枝构件的通用代码:
public class Composite extends Component {
     //构件容器
     private ArrayList<Component> componentArrayList = new ArrayList<Component>();
     //增加一个叶子构件或树枝构件
     public void add(Component component){
             this.componentArrayList.add(component);
     }
     //删除一个叶子构件或树枝构件
     public void remove(Component component){
this.componentArrayList.remove(component);
     }
     //获得分支下的所有叶子构件和树枝构件
     public ArrayList<Component> getChildren(){
             return this.componentArrayList;
     }
}

 

使用场景:
● 维护和展示部分-整体关系的场景,如树形菜单、文件和文件夹管理。
● 从一个整体中能够独立出部分模块或功能的场景。
注意:
只要是树形结构,就考虑使用组合模式。

16.观察者模式(Observer Pattern)

定义:Define a one-to-many dependency between objects so that when one object changes state,all its dependents are notified and updated automatically.(定义对象间一种一对多的依赖关系,使得每当一个对象改变状态,则所有依赖于它的对象都会得到通知并被自动更新。)

● Subject被观察者
定义被观察者必须实现的职责,它必须能够动态地增加、取消观察者。它一般是抽象类或者是实现类,仅仅完成作为被观察者必须实现的职责:管理观察者并通知观察者。
● Observer观察者
观察者接收到消息后,即进行update(更新方法)操作,对接收到的信息进行处理。
● ConcreteSubject具体的被观察者
定义被观察者自己的业务逻辑,同时定义对哪些事件进行通知。
● ConcreteObserver具体的观察者
每个观察在接收到消息后的处理反应是不同,各个观察者有自己的处理逻辑。
被观察者通用代码:
public abstract class Subject {
     //定义一个观察者数组
     private Vector<Observer> obsVector = new Vector<Observer>();
     //增加一个观察者
     public void addObserver(Observer o){
             this.obsVector.add(o);
     }
     //删除一个观察者
     public void delObserver(Observer o){
             this.obsVector.remove(o);
     }
     //通知所有观察者
     public void notifyObservers(){
             for(Observer o:this.obsVector){
                     o.update();
}
     }
}

 

使用场景:
● 关联行为场景。需要注意的是,关联行为是可拆分的,而不是“组合”关系。
● 事件多级触发场景。
● 跨系统的消息交换场景,如消息队列的处理机制。
注意:
● 广播链的问题
在一个观察者模式中最多出现一个对象既是观察者也是被观察者,也就是说消息最多转发一次(传递两次)。
● 异步处理问题
观察者比较多,而且处理时间比较长,采用异步处理来考虑线程安全和队列的问题。

17.门面模式(Facade Pattern)

定义:Provide a unified interface to a set of interfaces in a subsystem.Facade defines a higher-level interface that makes the subsystem easier to use.(要求一个子系统的外部与其内部的通信必须通过一个统一的对象进行。门面模式提供一个高层次的接口,使得子系统更易于使用。)

● Facade门面角色
客户端可以调用这个角色的方法。此角色知晓子系统的所有功能和责任。一般情况下,本角色会将所有从客户端发来的请求委派到相应的子系统去,也就说该角色没有实际的业务逻辑,只是一个委托类。
● subsystem子系统角色
可以同时有一个或者多个子系统。每一个子系统都不是一个单独的类,而是一个类的集合。子系统并不知道门面的存在。对于子系统而言,门面仅仅是另外一个客户端而已。
使用场景:
● 为一个复杂的模块或子系统提供一个供外界访问的接口
● 子系统相对独立——外界对子系统的访问只要黑箱操作即可
● 预防低水平人员带来的风险扩散
注意:
●一个子系统可以有多个门面
●门面不参与子系统内的业务逻辑

18.备忘录模式(Memento Pattern)

定义:Without violating encapsulation,capture and externalize an object's internal state so that the object can be restored to this state later.(在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。这样以后就可将该对象恢复到原先保存的状态。)

● Originator发起人角色
记录当前时刻的内部状态,负责定义哪些属于备份范围的状态,负责创建和恢复备忘录数据。
● Memento备忘录角色(简单的javabean)
负责存储Originator发起人对象的内部状态,在需要的时候提供发起人需要的内部状态。
● Caretaker备忘录管理员角色(简单的javabean)
对备忘录进行管理、保存和提供备忘录。
使用场景:
● 需要保存和恢复数据的相关状态场景。
● 提供一个可回滚(rollback)的操作。
● 需要监控的副本场景中。
● 数据库连接的事务管理就是用的备忘录模式。
注意:
●备忘录的生命期
●备忘录的性能
   不要在频繁建立备份的场景中使用备忘录模式(比如一个for循环中)。
clone方式备忘录:

● 发起人角色融合了发起人角色和备忘录角色,具有双重功效
多状态的备忘录模式

● 增加了一个BeanUtils类,其中backupProp是把发起人的所有属性值转换到HashMap中,方便备忘录角色存储。restoreProp方法则是把HashMap中的值返回到发起人角色中。
BeanUtil工具类代码:
public class BeanUtils {
     //把bean的所有属性及数值放入到Hashmap中
     public static HashMap<String,Object> backupProp(Object bean){
             HashMap<String,Object> result = new HashMap<String,Object>();
             try {
                     //获得Bean描述
                     BeanInfo beanInfo=Introspector.getBeanInfo(bean.getClass());
                     //获得属性描述
                     PropertyDescriptor[] descriptors=beanInfo.getPropertyDescriptors();
                     //遍历所有属性
                     for(PropertyDescriptor des:descriptors){
                             //属性名称
                             String fieldName = des.getName();
                             //读取属性的方法
                             Method getter = des.getReadMethod();
                             //读取属性值
                             Object fieldValue=getter.invoke(bean,new Object[]{});
                    if(!fieldName.equalsIgnoreCase("class")){
                             result.put(fieldName, fieldValue);
                    }
               }
          } catch (Exception e) {
               //异常处理
          }
          return result;
     }
     //把HashMap的值返回到bean中
     public static void restoreProp(Object bean,HashMap<String,Object> propMap){
          try {
               //获得Bean描述
               BeanInfo beanInfo = Introspector.getBeanInfo(bean.getClass());
               //获得属性描述
               PropertyDescriptor[] descriptors = beanInfo.getPropertyDescriptors();
               //遍历所有属性
               for(PropertyDescriptor des:descriptors){
                    //属性名称
                    String fieldName = des.getName();
                    //如果有这个属性
                    if(propMap.containsKey(fieldName)){
                         //写属性的方法
                         Method setter = des.getWriteMethod();
                         setter.invoke(bean, new Object[]{propMap.get(fieldName)});
                    }
               }
          } catch (Exception e) {
               //异常处理
               System.out.println("shit");
               e.printStackTrace();
          }
     }
}

 

多备份的备忘录:略
封装得更好一点:保证只能对发起人可读

●建立一个空接口IMemento——什么方法属性都没有的接口,然后在发起人Originator类中建立一个内置类(也叫做类中类)Memento实现IMemento接口,同时也实现自己的业务逻辑。

19.访问者模式(Visitor Pattern)

定义:Represent an operation to be performed on the elements of an object structure. Visitor lets you define a new operation without changing the classes of the elements on which it operates. (封装一些作用于某种数据结构中的各元素的操作,它可以在不改变数据结构的前提下定义作用于这些元素的新的操作。)

● Visitor——抽象访问者
抽象类或者接口,声明访问者可以访问哪些元素,具体到程序中就是visit方法的参数定义哪些对象是可以被访问的。
● ConcreteVisitor——具体访问者
它影响访问者访问到一个类后该怎么干,要做什么事情。
● Element——抽象元素
接口或者抽象类,声明接受哪一类访问者访问,程序上是通过accept方法中的参数来定义的。
● ConcreteElement——具体元素
实现accept方法,通常是visitor.visit(this),基本上都形成了一种模式了。
● ObjectStruture——结构对象
元素产生者,一般容纳在多个不同类、不同接口的容器,如List、Set、Map等,在项目中,一般很少抽象出这个角色。
使用场景:
● 一个对象结构包含很多类对象,它们有不同的接口,而你想对这些对象实施一些依赖于其具体类的操作,也就说是用迭代器模式已经不能胜任的情景。
● 需要对一个对象结构中的对象进行很多不同并且不相关的操作,而你想避免让这些操作“污染”这些对象的类。

20.状态模式(复杂)

定义:Allow an object to alter its behavior when its internal state changes.The object will appear to change its class.(当一个对象内在状态改变时允许其改变行为,这个对象看起来像改变了其类。)
● State——抽象状态角色
接口或抽象类,负责对象状态定义,并且封装环境角色以实现状态切换。
● ConcreteState——具体状态角色
每一个具体状态必须完成两个职责:本状态的行为管理以及趋向状态处理,通俗地说,就是本状态下要做的事情,以及本状态如何过渡到其他状态。
● Context——环境角色
定义客户端需要的接口,并且负责具体状态的切换。
使用场景:
● 行为随状态改变而改变的场景
这也是状态模式的根本出发点,例如权限设计,人员的状态不同即使执行相同的行为结果也会不同,在这种情况下需要考虑使用状态模式。
● 条件、分支判断语句的替代者
注意:
状态模式适用于当某个对象在它的状态发生改变时,它的行为也随着发生比较大的变化,也就是说在行为受状态约束的情况下可以使用状态模式,而且使用时对象的状态最好不要超过5个。

21.解释器模式(Interpreter Pattern)(少用)

定义:Given a language, define a representation for its grammar along with an interpreter that uses the representation to interpret sentences in the language.(给定一门语言,定义它的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中的句子。)

● AbstractExpression——抽象解释器
具体的解释任务由各个实现类完成,具体的解释器分别由TerminalExpression和Non-terminalExpression完成。
● TerminalExpression——终结符表达式
实现与文法中的元素相关联的解释操作,通常一个解释器模式中只有一个终结符表达式,但有多个实例,对应不同的终结符。具体到我们例子就是VarExpression类,表达式中的每个终结符都在栈中产生了一个VarExpression对象。
● NonterminalExpression——非终结符表达式
文法中的每条规则对应于一个非终结表达式,具体到我们的例子就是加减法规则分别对应到AddExpression和SubExpression两个类。非终结符表达式根据逻辑的复杂程度而增加,原则上每个文法规则都对应一个非终结符表达式。
● Context——环境角色
具体到我们的例子中是采用HashMap代替。
使用场景:
● 重复发生的问题可以使用解释器模式
● 一个简单语法需要解释的场景
注意:
尽量不要在重要的模块中使用解释器模式,否则维护会是一个很大的问题。在项目中可以使用shell、JRuby、Groovy等脚本语言来代替解释器模式,弥补Java编译型语言的不足。

22.享元模式(Flyweight Pattern)

定义:Use sharing to support large numbers of fine-grained objects efficiently.(使用共享对象可有效地支持大量的细粒度的对象。)
对象的信息分为两个部分:内部状态(intrinsic)与外部状态(extrinsic)。
● 内部状态
内部状态是对象可共享出来的信息,存储在享元对象内部并且不会随环境改变而改变。
● 外部状态
外部状态是对象得以依赖的一个标记,是随环境改变而改变的、不可以共享的状态。

● Flyweight——抽象享元角色
它简单地说就是一个产品的抽象类,同时定义出对象的外部状态和内部状态的接口或实现。
● ConcreteFlyweight——具体享元角色
具体的一个产品类,实现抽象角色定义的业务。该角色中需要注意的是内部状态处理应该与环境无关,不应该出现一个操作改变了内部状态,同时修改了外部状态,这是绝对不允许的。
● unsharedConcreteFlyweight——不可共享的享元角色
不存在外部状态或者安全要求(如线程安全)不能够使用共享技术的对象,该对象一般不会出现在享元工厂中。
● FlyweightFactory——享元工厂
职责非常简单,就是构造一个池容器,同时提供从池中获得对象的方法。
享元工厂的代码:
public class FlyweightFactory {
     //定义一个池容器
     private static  HashMap<String,Flyweight> pool= new HashMap<String,Flyweight>();
     //享元工厂
     public static Flyweight getFlyweight(String Extrinsic){
             //需要返回的对象
             Flyweight flyweight = null;
             //在池中没有该对象
             if(pool.containsKey(Extrinsic)){
                     flyweight = pool.get(Extrinsic);
             }else{
                     //根据外部状态创建享元对象
                     flyweight = new ConcreteFlyweight1(Extrinsic);
                     //放置到池中
                     pool.put(Extrinsic, flyweight);
             }
             return flyweight;
     }
}
使用场景:
● 系统中存在大量的相似对象。
● 细粒度的对象都具备较接近的外部状态,而且内部状态与环境无关,也就是说对象没有特定身份。
● 需要缓冲池的场景。
注意:
● 享元模式是线程不安全的,只有依靠经验,在需要的地方考虑一下线程安全,在大部分场景下不用考虑。对象池中的享元对象尽量多,多到足够满足为止。
● 性能安全:外部状态最好以java的基本类型作为标志,如String,int,可以提高效率。

23.桥梁模式(Bridge Pattern)

定义:Decouple an abstraction from its implementation so that the two can vary independently.(将抽象和实现解耦,使得两者可以独立地变化。)

● Abstraction——抽象化角色
它的主要职责是定义出该角色的行为,同时保存一个对实现化角色的引用,该角色一般是抽象类。
● Implementor——实现化角色
它是接口或者抽象类,定义角色必需的行为和属性。
● RefinedAbstraction——修正抽象化角色
它引用实现化角色对抽象化角色进行修正。
● ConcreteImplementor——具体实现化角色
它实现接口或抽象类定义的方法和属性。
使用场景:
● 不希望或不适用使用继承的场景
● 接口或抽象类不稳定的场景
● 重用性要求较高的场景
注意:
发现类的继承有N层时,可以考虑使用桥梁模式。桥梁模式主要考虑如何拆分抽象和实现。

设计原则:

●Single Responsibility Principle:单一职责原则

单一职责原则有什么好处:
● 类的复杂性降低,实现什么职责都有清晰明确的定义;
● 可读性提高,复杂性降低,那当然可读性提高了;
● 可维护性提高,可读性提高,那当然更容易维护了;
●变更引起的风险降低,变更是必不可少的,如果接口的单一职责做得好,一个接口修改只对相应的实现类有影响,对其他的接口无影响,这对系统的扩展性、维护性都有非常大的帮助。
ps:接口一定要做到单一职责,类的设计尽量做到只有一个原因引起变化。
       单一职责原则提出了一个编写程序的标准,用“职责”或“变化原因”来衡量接口或类设计得是否优良,但是“职责”和“变化原因”都是不可度量的,因项目而异,因环境而异。

● Liskov Substitution Principle:里氏替换原则

定义:Functions that use pointers or references to base classes must be able to use objects of derived classes without knowing it.
(所有引用基类的地方必须能透明地使用其子类的对象。)
通俗点讲,只要父类能出现的地方子类就可以出现,而且替换为子类也不会产生任何错误或异常,使用者可能根本就不需要知道是父类还是子类。但是,反过来就不行了,有子类出现的地方,父类未必就能适应。
定义中包含的四层含义:
1.子类必须完全实现父类的方法
2.子类可以有自己的个性
3.覆盖或实现父类的方法时输入参数可以被放大
        如果父类的输入参数类型大于子类的输入参数类型,会出现父类存在的地方,子类未必会存在,因为一旦把子类作为参数传入,调用者很可能进入子类的方法范畴。
 
4. 覆写或实现父类的方法时输出结果可以被缩小
      父类的一个方法的返回值是一个类型T,子类的相同方法(重载或覆写)的返回值为S,那么里氏替换原则就要求S必须小于等于T,也就是说,要么S和T是同一个类型,要么S是T的子类。
● Interface Segregation Principle:接口隔离原则
接口分为两种:
实例接口(Object Interface):Java中的类也是一种接口
类接口(Class Interface): Java中经常使用Interface关键字定义的接口
隔离:建立单一接口,不要建立臃肿庞大的接口;即接口要尽量细化,同时接口中的方法要尽量少。
接口隔离原则与单一职责原则的不同:接口隔离原则与单一职责的审视角度是不相同的,单一职责要求的是类和接口职责单一,注重的是职责,这是业务逻辑上的划分,而接口隔离原则要求接口的方法尽量少。

● Dependence Inversion Principle:依赖倒置原则

原始定义:
①高层模块不应该依赖低层模块,两者都应该依赖其抽象;
②抽象不应该依赖细节(实现类);
③细节应该依赖抽象。
依赖倒置原则在java语言中的体现:
①模块间的依赖通过抽象发生,实现类之间不发生直接的依赖关系,其依赖关系是通过接口或抽象类产生的;
②接口或抽象类不依赖于实现类;
③实现类依赖接口或抽象类。
依赖的三种写法
①构造函数传递依赖对象(构造函数注入)
②Setter方法传递依赖对象(setter依赖注入)
③接口声明依赖对象(接口注入)
使用原则:
依赖倒置原则的本质就是通过抽象(接口或抽象类)使各个类或模块的实现彼此独立,不互相影响,实现模块间的松耦合,我们怎么在项目中使用这个规则呢?只要遵循以下的几个规则就可以:
①每个类尽量都有接口或抽象类,或者抽象类和接口两者都具备
②变量的表面类型尽量是接口或者是抽象类
③任何类都不应该从具体类派生(只要不超过两层的继承是可以忍受的)
④尽量不要复写基类的方法
⑤结合里氏替换原则使用

●Open Closed Principle:开闭原则

定义:软件实体应该对扩展开放,对修改关闭。
其含义是说一个软件实体应该通过扩展来实现变化,而不是通过修改已有的代码来实现变化。
软件实体:项目或软件产品中按照一定的逻辑规则划分的模块、抽象和类、方法。
变化的三种类型:
①逻辑变化
只变化一个逻辑,而不涉及其他模块,比如原有的一个算法是a*b+c,现在需要修改为a*b*c,可以通过修改原有类中的方法的方式来完成,前提条件是所有依赖或关联类都按照相同的逻辑处理。
②子模块变化
一个模块变化,会对其他的模块产生影响,特别是一个低层次的模块变化必然引起高层模块的变化,因此在通过扩展完成变化时,高层次的模块修改是必然的。
③可见视图变化
可见视图是提供给客户使用的界面,如JSP程序、Swing界面等,该部分的变化一般会引起连锁反应(特别是在国内做项目,做欧美的外包项目一般不会影响太大)。可以通过扩展来完成变化,这要看我们原有的设计是否灵活。
63月/180

Vagrant-安装教程及常见问题

发布在 邵珠庆

前言:
Vagrant是一个基于Ruby的工具,用于创建和部署虚拟化开发环境。
它的主要意义是让所有开发人员都使用和线上服务器一样的环境,本质上和你新建一个虚拟机。
那最常见的,正常我们是怎么开发呢,大部分童鞋应该是在windows下搭建开发环境,敲代码,运行程序,达到效果git或svn提交,发布linux环境再看效果。
而vagrant virtualBox实现了把代码同步共享到linux虚拟机,而这个虚拟机你可以配成和你生产环境一样的,
说白了,通过共享文件到虚拟机,在类生产环境下运行。【让你在windows下体验到在linux开发的效果。
还有一种共享方式,可以借助IDE的develop功能通过sftp上传到服务器,然后访问服务器
三种方式总结:
【1】原始windows开发模式:windows开发-本地访问调试(与生产环境毕竟不同)-发布到linux运行
【2】vagrant virtualBox模式: windows开发 - 文件本地共享 -- 直接访问虚拟机(linux环境与生产一致)
【3】IDE develop 模式: windows开发 - 文件远程上传 -- 访问远程开发机(linux环境与生产一致)
其实【1】,与【2,3】的区别就在于,程序是在哪里运行的,windows本地?or Linux仿生产环境
(能在仿生产的环境直接开发肯定比在windows开发在放到linux更好些,开发方便避免一些环境上等的麻烦)
【2】与【3】的区别就在于文件是如何同步的:【2】是通过虚拟机文件共享实现同步;【3】直接利用sftp远程上传实现同步。
缺点:
【1】毫无疑问,它的弊端就是开发时不能模拟生产环境,可能会有衔接问题,环境有了问题不像虚拟机重安一台立刻搞定。
【3】存在的问题,比如:当切换开发分支后改动了文件a和b,当前ide选中的是a文件,ok他会自动上传更新,但是b文件不会,因为窗口你没在b文件下呀,没有那么智能不会自动触发上传更新,这点就坑了造成代码不同步,需要你自己手动触发一下相关文件的上传,尤其是依赖一些包的时候会发生丢失,得全项目上传一次;
【2】因为是本地和虚拟机的文件共享嘛,没有文件上传遗漏一说,所以还是很推荐用
目录:
一。安装虚拟机
二。Vagrantfile配置文件详解
三。连接虚拟机
四。碰到问题

一。安装虚拟机
1.添加box
vagrant box add base your_box_addres
注意:base是默认名称,主要用来标识一下你添加的box,后面的命令都是基于这个标识来操作的,你也可以用其他名称【但是用了其他名字记得在第二步用此名字init】
2.初始化
vagrant init
vagrant init box_name
如果你添加的box名称不是[base],那么需要在初始化的时候指定名称
3.启动虚拟机
vagrant up
启动过程可能比较长,耐心等待
图一.运行过程总图
图二
相关指令:

[plain] view plain copy

  1. vagrant up (启动虚拟机)
  2. vagrant halt (关闭虚拟机——对应就是关机)
  3. vagrant suspend (暂停虚拟机——只是暂停,虚拟机内存等信息将以状态文件的方式保存在本地,可以执行恢复操作后继续使用)
  4. vagrant resume (恢复虚拟机—— 与前面的暂停相对应)
  5. vagrant destroy (删除虚拟机,删除后在当前虚拟机所做进行的除开Vagrantfile中的配置都不会保留)
二.Vagrantfile配置文件详解
在我们的开发目录下有一个文件Vagrantfile,里面包含有大量的配置信息,主要包括三个方面的配置,虚拟机的配置、SSH配置、Vagrant的一些基础配置。(它的配置语法也是Ruby的)【修改配置文件,记得完后重启vagrant才能生效哦】

在我们的开发目录下有一个文件Vagrantfile,里面包含有大量的配置信息,主要包括三个方面的配置,虚拟机的配置、SSH配置、Vagrant的一些基础配置。Vagrant是使用Ruby开发的,所以它的配置语法也是Ruby的,但是我们没有学过Ruby的人还是可以跟着它的注释知道怎么配置一些基本项的配置。

具体介绍,参考:http://blog.csdn.net/chajinglong/article/details/52805915

[plain] view plain copy

  1. # -*- mode: ruby -*-
  2. # vi: set ft=ruby :
  3. # All Vagrant configuration is done below. The "2" in Vagrant.configure
  4. # configures the configuration version (we support older styles for
  5. # backwards compatibility). Please don\'t change it unless you know what
  6. # you\'re doing.
  7. Vagrant.configure(2) do |config|
  8.   # The most common configuration options are documented and commented below.
  9.   # For a complete reference, please see the online documentation at
  10.   # https://docs.vagrantup.com.
  11.   # Every Vagrant development environment requires a box. You can search for
  12.   # boxes at https://atlas.hashicorp.com/search.
  13.   config.vm.box = "base"
  14.   # Disable automatic box update checking. If you disable this, then
  15.   # boxes will only be checked for updates when the user runs
  16.   # `vagrant box outdated`. This is not recommended.
  17.   # config.vm.box_check_update = false
  18.   # Create a forwarded port mapping which allows access to a specific port
  19.   # within the machine from a port on the host machine. In the example below,
  20.   # accessing "localhost:8080" will access port 80 on the guest machine.
  21.   # config.vm.network "forwarded_port", guest: 80, host: 80
  22.   # Create a private network, which allows host-only access to the machine
  23.   # using a specific IP.
  24.   config.vm.network "private_network", ip: "192.168.33.10"
  25.   # Create a public network, which generally matched to bridged network.
  26.   # Bridged networks make the machine appear as another physical device on
  27.   # your network.
  28.   # config.vm.network "public_network"
  29.   # Share an additional folder to the guest VM. The first argument is
  30.   # the path on the host to the actual folder. The second argument is
  31.   # the path on the guest to mount the folder. And the optional third
  32.   # argument is a set of non-required options.
  33.   config.vm.synced_folder "D:/all_code/", "/home/www"
  34.   # Provider-specific configuration so you can fine-tune various
  35.   # backing providers for Vagrant. These expose provider-specific options.
  36.   # Example for VirtualBox:
  37.   #
  38.   # config.vm.provider "virtualbox" do |vb|
  39.   #   # Display the VirtualBox GUI when booting the machine
  40.   #   vb.gui = true
  41.   #
  42.   #   # Customize the amount of memory on the VM:
  43.   #   vb.memory = "1024"
  44.   # end
  45.   #
  46.   # View the documentation for the provider you are using for more
  47.   # information on available options.
  48.   # Define a Vagrant Push strategy for pushing to Atlas. Other push strategies
  49.   # such as FTP and Heroku are also available. See the documentation at
  50.   # https://docs.vagrantup.com/v2/push/atlas.html for more information.
  51.   # config.push.define "atlas" do |push|
  52.   #   push.app = "YOUR_ATLAS_USERNAME/YOUR_APPLICATION_NAME"
  53.   # end
  54.   # Enable provisioning with a shell script. Additional provisioners such as
  55.   # Puppet, Chef, Ansible, Salt, and Docker are also available. Please see the
  56.   # documentation for more information about their specific syntax and use.
  57.   # config.vm.provision "shell", inline: <
  58.   #   sudo apt-get update
  59.   #   sudo apt-get install -y apache2
  60.   # SHELL
  61. end
三.连接虚拟机
1.虚拟机相关登录信息
vagrant ssh
这样我们就可以像连接到一台服务器一样进行操作了。
图三
2.ssh登录
window机器不支持这样的命令,必须使用第三方客户端来进行连接,例如xmoba、putty、Xshell等.

[plain] view plain copy

  1. ssh: 127.0.0.1
  2. 端口: 2222
  3. 用户名: vagrant
  4. 密码: vagrant
图四.xshell登陆举例
图五.xmoba登陆举例
3.系统信息
df -h
/vagrant这个目录是自动映射的,被映射到你刚刚建立的文件夹,这样就方便我们以后在开发机中进行开发,在虚拟机中进行运行效果测试了。
四。碰到问题:
1.vagrant up 时提示错误 cound not open file 问题
如果init指定了 add的名称test,那么init时也要说明,少了这一步
如下边错误演示与正确演示。
图六.错误演示
图七.正确演示
2.vagrant up 时提示错误:

[plain] view plain copy

  1. The guest machine entered an invalid state while waiting for it
  2. to boot. Valid states are \'starting, running\'. The machine is in the
  3. \'poweroff\' state. Please verify everything is configured
  4. properly and try again.
  5. If the provider you\'re using has a GUI that comes with it,
  6. it is often helpful to open that and watch the machine, since the
  7. GUI often has more helpful error messages than Vagrant can retrieve.
  8. For example, if you\'re using VirtualBox, run `vagrant up` while the
  9. VirtualBox GUI is open.
  10. The primary issue for this error is that the provider you\'re using
  11. is not properly configured. This is very rarely a Vagrant issue.
打开虚拟机启动,也会提示报错:

[plain] view plain copy

  1. Unable to load R3 module D:\virtualBox/VBoxDD.DLL (VBoxDD): GetLastError=1790 (VERR_UNRESOLVED_ERROR).
原因:
本目录中的以下三个文件是原始的未被破解的WIN7 64位系统主题文件:
themeservice.dll , themeui.dll ,uxtheme.dll
为了使用工具UniversalThemePatcher-x64.exe恢复主题,特地将以上3个文件,
各拷贝了一份,并重新命名如下:
themeservice.dll.backup ,themeui.dll.backup ,uxtheme.dll.backup
解决方法:
我们只须把重命名后的3个文件:
themeservice.dll.backup ,themeui.dll.backup ,uxtheme.dll.backup
拷贝到C:\Windows\System32目录下面,
然后运行工具UniversalThemePatcher-x64.exe进行恢复即可。
下载地址:http://download.csdn.net/download/ty_hf/10013443【里边有使用说明】
3.虚拟机一切正常,文件代码也映射到虚拟机,但就是不能正常访问。
a).配置文件需要删除

[plain] view plain copy

  1. sudo rm -f /etc/udev/rules.d/70-persistent-net.rules
问题就处在在持久网络设备udev规则(persistent network device udev rules)是被原VM设置好的,再用box生成新VM时,这些rules需要被更新。而这和Vagrantfile里对新VM设置private network的指令发生冲突。删除就好了。
b).如果设置了host,虚拟机里也要设置一次

[plain] view plain copy

  1. vi /etc/hosts

3.问题 default: Warning: Authentication failure. Retrying...

[plain] view plain copy

  1. Bringing machine \'default\' up with \'virtualbox\' provider...
  2. ==> default: Clearing any previously set forwarded ports...
  3. ==> default: Clearing any previously set network interfaces...
  4. ==> default: Preparing network interfaces based on configuration...
  5.     default: Adapter 1: nat
  6.     default: Adapter 2: hostonly
  7. ==> default: Forwarding ports...
  8.     default: 22 (guest) => 2222 (host) (adapter 1)
  9. ==> default: Booting VM...
  10. ==> default: Waiting for machine to boot. This may take a few minute
  11.     default: SSH address: 127.0.0.1:2222
  12.     default: SSH username: vagrant
  13.     default: SSH auth method: private key
  14.     default: Warning: Remote connection disconnect. Retrying...
  15.     default: Warning: Authentication failure. Retrying...
  16.     default: Warning: Authentication failure. Retrying...
  17.     default: Warning: Authentication failure. Retrying...
  18. Timed out while waiting for the machine to boot. This means that
  19. Vagrant was unable to communicate with the guest machine within
  20. the configured ("config.vm.boot_timeout" value) time period.
  21. If you look above, you should be able to see the error(s) that
  22. Vagrant had when attempting to connect to the machine. These errors
  23. are usually good hints as to what may be wrong.
  24. If you\'re using a custom box, make sure that networking is properly
  25. working and you\'re able to connect to the machine. It is a common
  26. problem that networking isn\'t setup properly in these boxes.
  27. Verify that authentication configurations are also setup properly,
  28. as well.
  29. If the box appears to be booting properly, you may want to increase
  30. the timeout ("config.vm.boot_timeout") value.

解决:

编辑Vagrantfile ,添加如下文件

[plain] view plain copy

  1. config.ssh.username = "vagrant"
  2. config.ssh.password = "vagrant"
然后重启vagrant 重新加载配置文件

[plain] view plain copy

  1. vagrant halt
  2. vagrant up

注意登陆的时候看下 vagrant ssh 看下你的登录信息,端口号

4.报错问题:

[plain] view plain copy

  1. Bringing machine \'default\' up with \'virtualbox\' provider...
  2. Your VM has become "inaccessible." Unfortunately, this is a critical error
  3. with VirtualBox that Vagrant can not cleanly recover from. Please open VirtualBox
  4. and clear out your inaccessible virtual machines or find a way to fix
 解决:
 http://doodlebobbers.com/vagrant-error-your-vm-has-become-inaccessible/
其实就是删除.vagrant文件夹,然后重启vagrant
5.vagrant 启动的时候报错

[plain] view plain copy

  1. A Vagrant environment or target machine is required to run this
  2. command. Run vagrant init to create a new Vagrant environment. Or,
  3. get an ID of a target machine from vagrant global-status to run
  4. this command on. A final option is to change to a directory with a
  5. Vagrantfile and to try again.

少前边步骤了,比如vagrant init;或者没有进入对应vagrant init的文件夹

6.vagrant dns解析异常,访问接口特别慢,在Vagrantfile 配置文件中添加下边代码:

[plain] view plain copy

  1. config.vm.provider :virtualbox do |vb|
  2. vb.customize ["modifyvm", :id, "--natdnshostresolver1", "on"]
  3. vb.customize ["modifyvm", :id, "--natdnsproxy1", "on"]
7.vagrant up 又提示新报错!

[plain] view plain copy

  1. D:\vcode>vagrant up
  2. Bringing machine \'default\' up with \'virtualbox\' provider...
  3. Your VM has become "inaccessible." Unfortunately, this is a critical error
  4. with VirtualBox that Vagrant can not cleanly recover from. Please open VirtualBo
  5. x
  6. and clear out your inaccessible virtual machines or find a way to fix
  7. them.
相关资源:
官网下载:https://www.vagrantup.com/downloads.html
虚拟机等相关安装包: 链接:http://pan.baidu.com/s/1dEWSnEL 密码:ajaq
本文地址:http://blog.csdn.net/ty_hf/article/details/78314583