分享一篇文章:我的职业理想:成为数据分析师
很不错的文章,建议大家都看看,特别是菜鸟们!
为什么要做数据分析师:
在通信、互联网、金融等这些行业每天产生巨大的数据量(长期更是积累了大量丰富的数据,比如客户交易数据等等),据说到2020年,全球每年产生的数据量 达到3500万亿GB;海量的历史数据是否有价值,是否可以利用为领导决策提供参考依据?随着软件工具、数据库技术、各种硬件设备的飞快发展,使得我们分 析海量数据成为可能。
而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助OLAP和可视化工具等分析工具告诉用户为什么发生了,通过 dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找 出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。
我们举两个通过数据分析获得成功的例子:
(1) Facebook广告与微博、SNS等网络社区的用户相联系,通过先进的数据挖掘与分析技术,为广告商提供更为精准定位的服务,该精准广告模式收到广大广 告商的热捧,根据市场调研机构eMarketer的数据,Facebook年营收额超过20亿美元,成为美国最大的在线显示广告提供商。
(2) Hitwise发布会上,亚太区负责人John举例说明: 亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。
此外,还有好多好多,数据分析,在营销、金融、互联网等方面应用是非常广泛的:比如在营销领域,有数据库营销,精准营销,RFM分析,客户分群,销量预测 等等;在金融上预测股价及其波动,套利模型等等;在互联网电子商务上面,百度的精准广告,淘宝的数据魔方等等。类似成功的案例会越来越多,以至于数据分析 师也越来越受到重视。
然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策 能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放 大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手, 要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。
我的职业规划:
对于数据分析,有一句话说的非常好:spss/sql之类的软件、决策树、时间序列之类的方法,这些仅仅就都是个工具而已,最重要的是对业务的把握。没有 正确的业务理解,再牛的理论,再牛的工具,都是白搭。做一名合格的数据分析师,除了对数据需要有良好的敏感性之外,对相关业务的背景的深入了解,对客户或 业务部门的需求的清晰认识。根据实际的业务发展情况识别哪些数据可用,哪些不适用,而不是孤立地在“真空环境”下进行分析。
为此,我对自己的规划如下:
第一步:掌握基本的数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比 如,VBA,Matlab,Spss,Sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基 础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。
第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader 给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后 去西门子,做和VBA的事情,虽然做的事情与数据分析无关,不过在公司经常用VBA做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易 车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模 型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一 种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的 需求调研,和制定工作任务说明书SOW,体会颇多。
第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者IT公司吧,主要是做数据分析这块比较强的公司,比如Fico,埃森哲,高沃,瑞尼 尔,IBM,AC等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。
第四步:去自己喜欢的一个行业,深入了解这个行业,并讲数据分析应用到这个行业里。比如我可以去电子商务做数据分析师。我觉得我选择电子商务,是因为未来 必将是互联网的时代,电子商务必将取代传统商务,最显著的现象就是传统零售商老大沃尔玛正在受到亚马逊的挑战。此外,电子商务比传统的零售商具有更好的数 据收集和管理能力,可以更好的跟踪用户、挖掘潜在用户、挖掘潜在商品。
第五步:未知。我暂时没有想法,不过我希望我是在一直的进步。
有一位数据分析牛人曾经总结过数据分析师的能力和目标:
能力:一定要懂点战略、才能结合商业;一定要漂亮的presentation、才能buying;一定要有global view、才能打单;一定要懂业务、才能结合市场;一定要专几种工具、才能干活;一定要学好、才能有效率;一定要有强悍理论基础、才能入门;一定要努力、才能赚钱;最重要的:一定要务实、才有reputation;不懂的话以后慢慢就明白了。
目标:1-做过多少个项目?2-业务背景有哪些,是否跨行业?3-做过多少种类型的模型?做了多少个模型?4-基于模型做过多少次完整的marketing闭环?以上四个问题,足以秒杀95%以上的忽悠和菜鸟!
我仅以此为努力之坐标,时刻提醒自己。
路在前方,漫漫前行。